{"title":"Partitioning kite-free planar graphs into two forests","authors":"Yang Wang, Yiqiao Wang, Ko-Wei Lih","doi":"10.1002/jgt.23062","DOIUrl":null,"url":null,"abstract":"<p>A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.