Partitioning kite-free planar graphs into two forests

Pub Date : 2023-12-12 DOI:10.1002/jgt.23062
Yang Wang, Yiqiao Wang, Ko-Wei Lih
{"title":"Partitioning kite-free planar graphs into two forests","authors":"Yang Wang,&nbsp;Yiqiao Wang,&nbsp;Ko-Wei Lih","doi":"10.1002/jgt.23062","DOIUrl":null,"url":null,"abstract":"<p>A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.

分享
查看原文
将无筝平面图划分为两个森林
风筝图是四个顶点上去掉一条边的完整图。研究证明,每个没有风筝子图的平面图都可以划分为两个诱导森林。这解决了 Raspaud 和 Wang 在 2008 年提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信