{"title":"Cu–Ni/SiO2 Catalysts for Dehydrogenation Reaction of Secondary Butyl Alcohol","authors":"Li Zhang, Yujing Xue, Ying Zhang","doi":"10.1134/S0023158423930031","DOIUrl":null,"url":null,"abstract":"<p>Cu–Ni/SiO<sub>2</sub> catalysts were prepared by coprecipitation method and used in the dehydrogenation reaction of secondary butyl alcohol to methyl ethyl ketone (MEK). The crystal structure, reduction characteristics, element valence state and dispersibility of the catalysts were investigated using X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), X-ray Auger electron spectroscopy (XAES) and high resolution transmission electron microscopy (HRTEM). The role of Ni component in the dehydrogenation reaction of secondary butyl alcohol was analyzed. The results showed that the conversion of secondary butyl alcohol increased to over 99% when using the Cu–Ni/SiO<sub>2</sub> catalyst. The addition of nickel component to Cu/SiO<sub>2</sub> inhibited the agglomeration of copper nanoparticles. The interaction between copper and nickel was strengthened due to the formation of the Cu–Ni compound. This resulted in change to the valence state and improved the dispersion of copper species on the catalyst surface. The Cu<sup>+</sup>/(Cu<sup>+</sup> + Cu<sup>0</sup>) ratio increased with the addition of nickel component to Cu/SiO<sub>2</sub>, which may be responsible for the enhancement of the secondary butyl alcohol conversion. However, the addition of the nickel component increased the reduction temperature of the catalysts and deteriorated their reduction characteristics, which leads to insufficient reduction, resulting in a high content of Cu<sup>+</sup> species remaining in the catalyst. Therefore, side reactions can occur, which are detrimental to the selectivity and yield of MEK. The selectivity to MEK can reach 98% with the Cu/SiO<sub>2</sub> catalyst, whereas that for the Cu–Ni/SiO<sub>2</sub> catalyst was 97%.</p>","PeriodicalId":682,"journal":{"name":"Kinetics and Catalysis","volume":"64 6","pages":"872 - 881"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetics and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0023158423930031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cu–Ni/SiO2 catalysts were prepared by coprecipitation method and used in the dehydrogenation reaction of secondary butyl alcohol to methyl ethyl ketone (MEK). The crystal structure, reduction characteristics, element valence state and dispersibility of the catalysts were investigated using X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), X-ray Auger electron spectroscopy (XAES) and high resolution transmission electron microscopy (HRTEM). The role of Ni component in the dehydrogenation reaction of secondary butyl alcohol was analyzed. The results showed that the conversion of secondary butyl alcohol increased to over 99% when using the Cu–Ni/SiO2 catalyst. The addition of nickel component to Cu/SiO2 inhibited the agglomeration of copper nanoparticles. The interaction between copper and nickel was strengthened due to the formation of the Cu–Ni compound. This resulted in change to the valence state and improved the dispersion of copper species on the catalyst surface. The Cu+/(Cu+ + Cu0) ratio increased with the addition of nickel component to Cu/SiO2, which may be responsible for the enhancement of the secondary butyl alcohol conversion. However, the addition of the nickel component increased the reduction temperature of the catalysts and deteriorated their reduction characteristics, which leads to insufficient reduction, resulting in a high content of Cu+ species remaining in the catalyst. Therefore, side reactions can occur, which are detrimental to the selectivity and yield of MEK. The selectivity to MEK can reach 98% with the Cu/SiO2 catalyst, whereas that for the Cu–Ni/SiO2 catalyst was 97%.
期刊介绍:
Kinetics and Catalysis Russian is a periodical that publishes theoretical and experimental works on homogeneous and heterogeneous kinetics and catalysis. Other topics include the mechanism and kinetics of noncatalytic processes in gaseous, liquid, and solid phases, quantum chemical calculations in kinetics and catalysis, methods of studying catalytic processes and catalysts, the chemistry of catalysts and adsorbent surfaces, the structure and physicochemical properties of catalysts, preparation and poisoning of catalysts, macrokinetics, and computer simulations in catalysis. The journal also publishes review articles on contemporary problems in kinetics and catalysis. The journal welcomes manuscripts from all countries in the English or Russian language.