{"title":"Detecting Distributed Denial of Service (DDoS) in MANET Using Ad Hoc On-Demand Distance Vector (AODV) with Extra Tree Classifier (ETC)","authors":"N. Sivanesan, A. Rajesh, S. Anitha, K. S. Archana","doi":"10.1007/s40998-023-00678-7","DOIUrl":null,"url":null,"abstract":"<p>This paper concentrate on an option for mitigating distributed denial of service (DDoS) attacks that can stern consequences in mobile ad hoc network (MANET). Discovering a solution to a DDoS attack has gained research focus but challenges exists in performing attack detection with high accuracy along with developing a mechanism in detecting diverse methods to classify DDoS attack activities and also to classify it as an effective measure. The existing methods have numerous difficulties involving detection system performance limits, system scalability and stability, and the capability to develop large volumes of information. This paper concentrates on ETC with randomized search algorithm to detect attacks categorized as flooding, scheduling, black holes and gray holes, using a machine learning (ML) technique as classifier for understanding the behavior of these attacks and trains the better classification method in the MANET data transmitting dataset. The ETC algorithm employs the traditional top-down construction method to construct an ensemble of unpruned decision or regression trees. It separates nodes by selecting cut points thresholds completely at random, which sets it apart from previous tree-based ensemble approaches. When the data transmitted in the AODV, the behavior of node is analyzed and reported in the dataset as target which is trained through ML method. This AODV with ML proposed model can justify the behavior of network in MANET and classify the attack type for the current application. Moreover, the ML method performance has been developed through hyperparameter tuning which can be evaluated through confusion matrix metrics. This AODV with extra tree classifier (ETC) generate improved accuracy as 98.89% using hyperparameter tuning process in determining the safe data transaction in MANET.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"281 2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-023-00678-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper concentrate on an option for mitigating distributed denial of service (DDoS) attacks that can stern consequences in mobile ad hoc network (MANET). Discovering a solution to a DDoS attack has gained research focus but challenges exists in performing attack detection with high accuracy along with developing a mechanism in detecting diverse methods to classify DDoS attack activities and also to classify it as an effective measure. The existing methods have numerous difficulties involving detection system performance limits, system scalability and stability, and the capability to develop large volumes of information. This paper concentrates on ETC with randomized search algorithm to detect attacks categorized as flooding, scheduling, black holes and gray holes, using a machine learning (ML) technique as classifier for understanding the behavior of these attacks and trains the better classification method in the MANET data transmitting dataset. The ETC algorithm employs the traditional top-down construction method to construct an ensemble of unpruned decision or regression trees. It separates nodes by selecting cut points thresholds completely at random, which sets it apart from previous tree-based ensemble approaches. When the data transmitted in the AODV, the behavior of node is analyzed and reported in the dataset as target which is trained through ML method. This AODV with ML proposed model can justify the behavior of network in MANET and classify the attack type for the current application. Moreover, the ML method performance has been developed through hyperparameter tuning which can be evaluated through confusion matrix metrics. This AODV with extra tree classifier (ETC) generate improved accuracy as 98.89% using hyperparameter tuning process in determining the safe data transaction in MANET.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.