Multifractal nonlinearity as a robust estimator of multiplicative cascade dynamics

Madhur Mangalam, Aaron D Likens, Damian G Kelty-Stephen
{"title":"Multifractal nonlinearity as a robust estimator of multiplicative cascade dynamics","authors":"Madhur Mangalam, Aaron D Likens, Damian G Kelty-Stephen","doi":"arxiv-2312.05653","DOIUrl":null,"url":null,"abstract":"Multifractal formalisms provide an apt framework to study random cascades in\nwhich multifractal spectrum width $\\Delta\\alpha$ fluctuates depending on the\nnumber of estimable power-law relationships. Then again, multifractality\nwithout surrogate comparison can be ambiguous: the original measurement series'\nmultifractal spectrum width $\\Delta\\alpha_\\mathrm{Orig}$ can be sensitive to\nthe series length, ergodicity-breaking linear temporal correlations (e.g.,\nfractional Gaussian noise, $fGn$), or additive cascade dynamics. To test these\nthreats, we built a suite of random cascades that differ by the length, type of\nnoise (i.e., additive white Gaussian noise, $awGn$, or $fGn$), and mixtures of\n$awGn$ or $fGn$ across generations (progressively more $awGn$, progressively\nmore $fGn$, and a random sampling by generation), and operations applying noise\n(i.e., addition vs. multiplication). The so-called ``multifractal\nnonlinearity'' $t_\\mathrm{MF}$ (i.e., a $t$-statistic comparing\n$\\Delta\\alpha_\\mathrm{Orig}$ and multifractal spectra width for\nphase-randomized linear surrogates $\\Delta\\alpha_\\mathrm{Surr}$) is a robust\nindicator of random multiplicative rather than random additive cascade\nprocesses irrespective of the series length or type of noise. $t_\\mathrm{MF}$\nis more sensitive to the number of generations than the series length.\nFurthermore, the random additive cascades exhibited much stronger ergodicity\nbreaking than all multiplicative analogs. Instead, ergodicity breaking in\nrandom multiplicative cascades more closely followed the ergodicity-breaking of\nthe constituent noise types -- breaking ergodicity much less when arising from\nergodic $awGn$ and more so for noise incorporating relatively more correlated\n$fGn$. Hence, $t_\\mathrm{MF}$ is a robust multifractal indicator of\nmultiplicative cascade processes and not spuriously sensitive to ergodicity\nbreaking.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multifractal formalisms provide an apt framework to study random cascades in which multifractal spectrum width $\Delta\alpha$ fluctuates depending on the number of estimable power-law relationships. Then again, multifractality without surrogate comparison can be ambiguous: the original measurement series' multifractal spectrum width $\Delta\alpha_\mathrm{Orig}$ can be sensitive to the series length, ergodicity-breaking linear temporal correlations (e.g., fractional Gaussian noise, $fGn$), or additive cascade dynamics. To test these threats, we built a suite of random cascades that differ by the length, type of noise (i.e., additive white Gaussian noise, $awGn$, or $fGn$), and mixtures of $awGn$ or $fGn$ across generations (progressively more $awGn$, progressively more $fGn$, and a random sampling by generation), and operations applying noise (i.e., addition vs. multiplication). The so-called ``multifractal nonlinearity'' $t_\mathrm{MF}$ (i.e., a $t$-statistic comparing $\Delta\alpha_\mathrm{Orig}$ and multifractal spectra width for phase-randomized linear surrogates $\Delta\alpha_\mathrm{Surr}$) is a robust indicator of random multiplicative rather than random additive cascade processes irrespective of the series length or type of noise. $t_\mathrm{MF}$ is more sensitive to the number of generations than the series length. Furthermore, the random additive cascades exhibited much stronger ergodicity breaking than all multiplicative analogs. Instead, ergodicity breaking in random multiplicative cascades more closely followed the ergodicity-breaking of the constituent noise types -- breaking ergodicity much less when arising from ergodic $awGn$ and more so for noise incorporating relatively more correlated $fGn$. Hence, $t_\mathrm{MF}$ is a robust multifractal indicator of multiplicative cascade processes and not spuriously sensitive to ergodicity breaking.
多分形非线性作为乘法级联动态的稳健估算器
多分形形式主义为研究随机级联提供了一个合适的框架,在随机级联中,多分形谱宽 $\Delta\alpha$ 的波动取决于可估算的幂律关系的数量。然而,没有替代比较的多分形可能是模糊的:原始测量序列的多分形谱宽 $\Delta\alpha_\mathrm{Orig}$ 可能对序列长度、破坏遍历性的线性时间相关性(如分数高斯噪声,$fGn$)或相加级联动力学很敏感。为了测试这些威胁,我们建立了一套随机级联,其长度、噪声类型(即加性白高斯噪声、$awGn$或$fGn$)、各代$awGn$或$fGn$的混合物(逐步增加$awGn$、逐步增加$fGn$以及各代随机抽样)以及应用噪声的操作(即加法与乘法)各不相同。所谓的 "多分形非线性"$t_\mathrm{MF}$(即比较$\Delta\alpha_\mathrm{Orig}$和多分形谱宽的相随机线性代用$\Delta\alpha_\mathrm{Surr}$的$t$统计量)是随机乘法级联过程而非随机加法级联过程的稳健指标,与序列长度或噪声类型无关。此外,与所有乘法级联相比,随机加法级联表现出更强的遍历性破坏。相反,随机乘法级联的遍历性破缺更接近于组成噪声类型的遍历性破缺--当产生于ergodic$awGn$时,遍历性破缺要小得多,而对于包含相对更相关的$fGn$的噪声,遍历性破缺则更大。因此,$t_\mathrm{MF}$是多分形级联过程的稳健指标,而不是对遍历性破坏的虚假敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信