{"title":"Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities","authors":"Zhen-Ping Yang, Yong Zhao, Gui-Hua Lin","doi":"10.1007/s10898-023-01346-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve <span>\\({\\mathcal {O}}(1/t)\\)</span> ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01346-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve \({\mathcal {O}}(1/t)\) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.