q-Laplace equation involving the gradient on general bounded and exterior domains

A. Razani, C. Cowan
{"title":"q-Laplace equation involving the gradient on general bounded and exterior domains","authors":"A. Razani, C. Cowan","doi":"10.1007/s00030-023-00900-9","DOIUrl":null,"url":null,"abstract":"<p>The existence of positive singular solutions of </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{lcc} -\\Delta _q u=(1+g(x))|\\nabla u|^p &amp;{}\\quad \\text {in}&amp;{} B_1,\\\\ u=0&amp;{}\\quad \\text {on}&amp;{} \\partial B_1, \\end{array} \\right. \\end{aligned}$$</span>(1)<p>is proved, where <span>\\(B_1\\)</span> is the unit ball in <span>\\({\\mathbb {R}}^N\\)</span>, <span>\\(N \\ge 3\\)</span>, <span>\\(2&lt;q&lt;N\\)</span>, <span>\\(\\frac{N(q-1)}{N-1}&lt;p&lt;q\\)</span> and <span>\\(g\\ge 0\\)</span> is a Hölder continuous function with <span>\\(g(0) = 0\\)</span>. Also, the existence of positive singular solutions of </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{lcc} -\\Delta _q u=|\\nabla u|^p &amp;{}\\quad \\text {in}&amp;{} \\Omega ,\\\\ u=0&amp;{}\\quad \\text {on}&amp;{} \\partial \\Omega . \\end{array} \\right. \\end{aligned}$$</span>(2)<p>is proved, where <span>\\(\\Omega \\)</span> is a bounded smooth domain in <span>\\({\\mathbb {R}}^N\\)</span>, <span>\\(N \\ge 3\\)</span>, <span>\\(2&lt; q&lt;N\\)</span> and <span>\\(\\frac{N(q-1)}{N-1}&lt;p&lt;q\\)</span>. Finally, the existence of a bounded positive classical solution of (2) with the additional property that <span>\\(\\nabla u(x) \\cdot x &gt; 0\\)</span> for large |<i>x</i>| is proved, in the case of <span>\\(\\Omega \\)</span> an exterior domain <span>\\({\\mathbb {R}}^N\\)</span>, <span>\\(N\\ge 3\\)</span> and <span>\\(p &gt;\\frac{N(q-1)}{N-1}\\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"887 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00900-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of positive singular solutions of

$$\begin{aligned} \left\{ \begin{array}{lcc} -\Delta _q u=(1+g(x))|\nabla u|^p &{}\quad \text {in}&{} B_1,\\ u=0&{}\quad \text {on}&{} \partial B_1, \end{array} \right. \end{aligned}$$(1)

is proved, where \(B_1\) is the unit ball in \({\mathbb {R}}^N\), \(N \ge 3\), \(2<q<N\), \(\frac{N(q-1)}{N-1}<p<q\) and \(g\ge 0\) is a Hölder continuous function with \(g(0) = 0\). Also, the existence of positive singular solutions of

$$\begin{aligned} \left\{ \begin{array}{lcc} -\Delta _q u=|\nabla u|^p &{}\quad \text {in}&{} \Omega ,\\ u=0&{}\quad \text {on}&{} \partial \Omega . \end{array} \right. \end{aligned}$$(2)

is proved, where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^N\), \(N \ge 3\), \(2< q<N\) and \(\frac{N(q-1)}{N-1}<p<q\). Finally, the existence of a bounded positive classical solution of (2) with the additional property that \(\nabla u(x) \cdot x > 0\) for large |x| is proved, in the case of \(\Omega \) an exterior domain \({\mathbb {R}}^N\), \(N\ge 3\) and \(p >\frac{N(q-1)}{N-1}\).

涉及一般有界域和外部域上梯度的 q-拉普拉斯方程
$$\begin{aligned} 的正奇异解的存在性-Delta _q u=(1+g(x))|\nabla u|^p &{}\quad \text {in}&{} B_1,\\ u=0&{}\quad \text {on}&{}\Partial B_1, end{array}\right.\end{aligned}$$(1)is proved, where \(B_1\) is the unit ball in \({\mathbb {R}}^N\), \(N \ge 3\), \(2<q<N\), \(\frac{N(q-1)}{N-1}<p<q\) and\(g\ge 0\) is a Hölder continuous function with \(g(0) = 0\).同时,$$\begin{aligned}的正奇异解存在\left\{ \begin{array}{lcc} -\Delta _q u=|\nabla u|^p &{}\quad \text {in}&{}\Omega ,\ u=0&{}\quad \text {on}&{}\partial \Omega .\end{array}\right.\end{aligned}$$(2)is proved, where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^N\), \(N \ge 3\), \(2< q<N\) and\(\frac{N(q-1)}{N-1}<p<q\).最后,证明了在 \(\Omega \) an exterior domain \({\mathbb {R}}^N\), \(N\ge 3\) and\(p >\frac{N(q-1)}{N-1}) 的情况下,(2) 的有界正经典解的存在,该解的附加性质是对于大的 |x| 来说 \(\nabla u(x) \cdot x > 0\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信