Moment functions of higher rank on some types of hypergroups

Pub Date : 2023-12-11 DOI:10.1007/s00233-023-10401-x
Żywilla Fechner, Eszter Gselmann, László Székelyhidi
{"title":"Moment functions of higher rank on some types of hypergroups","authors":"Żywilla Fechner, Eszter Gselmann, László Székelyhidi","doi":"10.1007/s00233-023-10401-x","DOIUrl":null,"url":null,"abstract":"<p>We consider moment functions of higher order. In our earlier paper, we have already investigated the moment functions of higher order on groups. The main purpose of this work is to prove characterization theorems for moment functions on the multivariate polynomial hypergroups and on the Sturm–Liouville hypergroups. In the first case, the moment generating functions of higher rank are partial derivatives (taken at zero) of the composition of generating polynomials of the hypergroup and functions whose coordinates are given by the formal power series. On Sturm–Liouville hypergroups the moment functions of higher rank are restrictions of even smooth functions that also satisfy certain boundary value problems. The second characterization of moment functions of higher rank on Sturm–Liouville hypergroups is given by means of an exponential family. In this case, the moment functions of higher rank are partial derivatives of an appropriately modified exponential family again taken at zero.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-023-10401-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider moment functions of higher order. In our earlier paper, we have already investigated the moment functions of higher order on groups. The main purpose of this work is to prove characterization theorems for moment functions on the multivariate polynomial hypergroups and on the Sturm–Liouville hypergroups. In the first case, the moment generating functions of higher rank are partial derivatives (taken at zero) of the composition of generating polynomials of the hypergroup and functions whose coordinates are given by the formal power series. On Sturm–Liouville hypergroups the moment functions of higher rank are restrictions of even smooth functions that also satisfy certain boundary value problems. The second characterization of moment functions of higher rank on Sturm–Liouville hypergroups is given by means of an exponential family. In this case, the moment functions of higher rank are partial derivatives of an appropriately modified exponential family again taken at zero.

分享
查看原文
某些类型超群上的高阶矩函数
我们考虑高阶矩函数。在早先的论文中,我们已经研究了群上的高阶矩函数。这项工作的主要目的是证明多元多项式超群和 Sturm-Liouville 超群上矩函数的特征定理。在第一种情况下,高阶矩生成函数是超群的生成多项式与坐标由形式幂级数给出的函数组成的偏导数(取零)。在 Sturm-Liouville 超群上,高阶矩函数是也满足某些边界值问题的偶平滑函数的限制。Sturm-Liouville 超群上高阶矩函数的第二个特征是通过指数族给出的。在这种情况下,高阶矩函数是一个经过适当修正的指数族的偏导数,再次取值为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信