Knockdown of miR-135a-5p Promotes Mitophagy by Regulating FoxO1/PINK1/Parkin Signaling in Hepatoma Cells Exposed to Oxidative Stress

IF 0.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Wang Zhenchang, Zhang Wenf, Wu Shanshan, Yang Lei
{"title":"Knockdown of miR-135a-5p Promotes Mitophagy by Regulating FoxO1/PINK1/Parkin Signaling in Hepatoma Cells Exposed to Oxidative Stress","authors":"Wang Zhenchang, Zhang Wenf, Wu Shanshan, Yang Lei","doi":"10.2174/0115701646258315231102070151","DOIUrl":null,"url":null,"abstract":"Introduction: Excessive oxidative stress is always associated with hepatic disease, including hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Despite this, the intricate molecular processes driving hepatocyte apoptosis due to oxidative stress remain incompletely comprehended. Aim: Consequently, we aimed to explore the role of miR-135a-5p in hepatoma cells (HepG2/3B). Methods: The assessment of protein expression was conducted through western blotting. Furthermore, miR-135a-5p expression was evaluated through RT-qPCR, and apoptosis detection was performed using a flow cytometry assay. Result: The findings suggest a connection between miR-135a-5p and mitochondrial-driven apoptosis through caspase signaling pathways. Furthermore, miR-135a-5p suppression inhibited the apoptotic response triggered by H2O2, reactive oxygen species (ROS) generation, as well as the decrease in mitochondrial membrane potential. Conclusion: Additionally, miR-135a-5p knockdown promoted mitophagy by regulating FoxO1/PINK1/Parkin signaling via targeting FoxO1. To conclude, our study implied that miR135a-5p might function as a probable regulator that protects cells against oxidative stress.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646258315231102070151","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Excessive oxidative stress is always associated with hepatic disease, including hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Despite this, the intricate molecular processes driving hepatocyte apoptosis due to oxidative stress remain incompletely comprehended. Aim: Consequently, we aimed to explore the role of miR-135a-5p in hepatoma cells (HepG2/3B). Methods: The assessment of protein expression was conducted through western blotting. Furthermore, miR-135a-5p expression was evaluated through RT-qPCR, and apoptosis detection was performed using a flow cytometry assay. Result: The findings suggest a connection between miR-135a-5p and mitochondrial-driven apoptosis through caspase signaling pathways. Furthermore, miR-135a-5p suppression inhibited the apoptotic response triggered by H2O2, reactive oxygen species (ROS) generation, as well as the decrease in mitochondrial membrane potential. Conclusion: Additionally, miR-135a-5p knockdown promoted mitophagy by regulating FoxO1/PINK1/Parkin signaling via targeting FoxO1. To conclude, our study implied that miR135a-5p might function as a probable regulator that protects cells against oxidative stress.
敲除 miR-135a-5p 可通过调控暴露于氧化应激的肝癌细胞中的 FoxO1/PINK1/Parkin 信号促进有丝分裂
导言:过度的氧化应激总是与肝脏疾病相关,包括肝炎、肝纤维化和肝细胞癌(HCC)。尽管如此,人们对氧化应激导致肝细胞凋亡的复杂分子过程仍不甚了解。目的:因此,我们旨在探索 miR-135a-5p 在肝癌细胞(HepG2/3B)中的作用。方法通过 Western 印迹法评估蛋白表达。此外,还通过 RT-qPCR 评估了 miR-135a-5p 的表达,并使用流式细胞术检测了细胞凋亡。结果研究结果表明,miR-135a-5p 与线粒体通过 caspase 信号通路驱动的细胞凋亡有关。此外,抑制 miR-135a-5p 可抑制 H2O2 引发的凋亡反应、活性氧(ROS)生成以及线粒体膜电位的降低。结论此外,miR-135a-5p 的敲除还能通过靶向 FoxO1 调节 FoxO1/PINK1/Parkin 信号转导来促进有丝分裂。总之,我们的研究表明,miR135a-5p 可能是一种保护细胞免受氧化应激的调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Proteomics
Current Proteomics BIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍: Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry. Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to: Protein separation and characterization techniques 2-D gel electrophoresis and image analysis Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching Determination of co-translational and post- translational modification of proteins Protein/peptide microarrays Biomolecular interaction analysis Analysis of protein complexes Yeast two-hybrid projects Protein-protein interaction (protein interactome) pathways and cell signaling networks Systems biology Proteome informatics (bioinformatics) Knowledge integration and management tools High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography) High-throughput computational methods for protein 3-D structure as well as function determination Robotics, nanotechnology, and microfluidics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信