Fast Ultra High-Definition Video Deblurring via Multi-scale Separable Network

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenqi Ren, Senyou Deng, Kaihao Zhang, Fenglong Song, Xiaochun Cao, Ming-Hsuan Yang
{"title":"Fast Ultra High-Definition Video Deblurring via Multi-scale Separable Network","authors":"Wenqi Ren, Senyou Deng, Kaihao Zhang, Fenglong Song, Xiaochun Cao, Ming-Hsuan Yang","doi":"10.1007/s11263-023-01958-9","DOIUrl":null,"url":null,"abstract":"<p>Despite significant progress has been made in image and video deblurring, much less attention has been paid to process ultra high-definition (UHD) videos (e.g., 4K resolution). In this work, we propose a novel deep model for fast and accurate UHD video deblurring (UHDVD). The proposed UHDVD is achieved by a depth-wise separable-patch architecture, which operates with a multi-scale integration scheme to achieve a large receptive field without adding the number of generic convolutional layers and kernels. Additionally, we adopt the temporal feature attention module to effectively exploit the temporal correlation between video frames to obtain clearer recovered images. We design an asymmetrical encoder–decoder architecture with residual channel-spatial attention blocks to improve accuracy and reduce the depth of the network appropriately. Consequently, the proposed UHDVD achieves real-time performance on 4K videos at 30 fps. To train the proposed model, we build a new dataset comprised of 4K blurry videos and corresponding sharp frames using three different smartphones. Extensive experimental results show that our network performs favorably against the state-of-the-art methods on the proposed 4K dataset and existing 720p and 2K benchmarks in terms of accuracy, speed, and model size.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"90 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-023-01958-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant progress has been made in image and video deblurring, much less attention has been paid to process ultra high-definition (UHD) videos (e.g., 4K resolution). In this work, we propose a novel deep model for fast and accurate UHD video deblurring (UHDVD). The proposed UHDVD is achieved by a depth-wise separable-patch architecture, which operates with a multi-scale integration scheme to achieve a large receptive field without adding the number of generic convolutional layers and kernels. Additionally, we adopt the temporal feature attention module to effectively exploit the temporal correlation between video frames to obtain clearer recovered images. We design an asymmetrical encoder–decoder architecture with residual channel-spatial attention blocks to improve accuracy and reduce the depth of the network appropriately. Consequently, the proposed UHDVD achieves real-time performance on 4K videos at 30 fps. To train the proposed model, we build a new dataset comprised of 4K blurry videos and corresponding sharp frames using three different smartphones. Extensive experimental results show that our network performs favorably against the state-of-the-art methods on the proposed 4K dataset and existing 720p and 2K benchmarks in terms of accuracy, speed, and model size.

Abstract Image

通过多尺度可分离网络实现快速超高清视频去模糊
尽管在图像和视频去模糊方面取得了重大进展,但对超高清(UHD)视频(如 4K 分辨率)处理的关注却少得多。在这项工作中,我们提出了一种新颖的深度模型,用于快速准确地进行 UHD 视频去模糊(UHDVD)。所提出的 UHDVD 是通过深度可分离补丁架构实现的,该架构采用多尺度整合方案,在不增加通用卷积层和内核数量的情况下实现了大接受场。此外,我们还采用了时间特征关注模块,以有效利用视频帧之间的时间相关性,从而获得更清晰的恢复图像。我们设计了一种非对称的编码器-解码器架构,其中包含残差信道-空间注意块,以提高准确性并适当降低网络深度。因此,所提出的 UHDVD 在 30 fps 的 4K 视频上实现了实时性能。为了训练所提出的模型,我们使用三种不同的智能手机建立了一个由 4K 模糊视频和相应清晰帧组成的新数据集。广泛的实验结果表明,在拟议的 4K 数据集以及现有的 720p 和 2K 基准上,我们的网络在准确性、速度和模型大小方面均优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信