HOBi-CGSTAB and HOBi-CRSTAB methods for solving some tensor equations

IF 0.9 Q2 MATHEMATICS
Eisa Khosravi Dehdezi
{"title":"HOBi-CGSTAB and HOBi-CRSTAB methods for solving some tensor equations","authors":"Eisa Khosravi Dehdezi","doi":"10.1007/s13370-023-01155-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, solving tensor equations (or multilinear systems) has attracted a lot of attention. This paper investigates the tensor form of the Bi-CGSTAB and Bi-CRSTAB methods, by employing Kronecker product, vectorization, and bilinear operator, to solve the generalized coupled Sylvester tensor equations <span>\\(\\sum _{i=1}^{n}({\\mathcal {X}}\\times _1A_{i1}\\times _2A_{i2}+\\mathcal Y\\times _1B_{i1}\\times _2B_{i2})={\\mathcal {E}}_1,~\\sum _{i=1}^{n}(\\mathcal X\\times _1C_{i1}\\times _2C_{i2}+\\mathcal Y\\times _1D_{i1}\\times _2D_{i2})={\\mathcal {E}}_2,\\)</span> with no matricization. Also some properties of the new methods are presented. By applying multilinear operator, the proposed methods are extended to the general form. Some numerical examples are provided to compare the efficiency of the investigated methods with some existing popular algorithms. Finally, some concluding remarks are given.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01155-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, solving tensor equations (or multilinear systems) has attracted a lot of attention. This paper investigates the tensor form of the Bi-CGSTAB and Bi-CRSTAB methods, by employing Kronecker product, vectorization, and bilinear operator, to solve the generalized coupled Sylvester tensor equations \(\sum _{i=1}^{n}({\mathcal {X}}\times _1A_{i1}\times _2A_{i2}+\mathcal Y\times _1B_{i1}\times _2B_{i2})={\mathcal {E}}_1,~\sum _{i=1}^{n}(\mathcal X\times _1C_{i1}\times _2C_{i2}+\mathcal Y\times _1D_{i1}\times _2D_{i2})={\mathcal {E}}_2,\) with no matricization. Also some properties of the new methods are presented. By applying multilinear operator, the proposed methods are extended to the general form. Some numerical examples are provided to compare the efficiency of the investigated methods with some existing popular algorithms. Finally, some concluding remarks are given.

求解某些张量方程的 HOBi-CGSTAB 和 HOBi-CRSTAB 方法
最近,张量方程(或多线性系统)的求解引起了广泛关注。本文通过使用 Kronecker 积、矢量化和双线性算子,研究了 Bi-CGSTAB 和 Bi-CRSTAB 方法的张量形式、来求解广义耦合西尔维斯特张量方程 \(\sum _{i=1}^{n}({\mathcal {X}}\times _1A_{i1}\times _2A_{i2}+\mathcal Y\times _1B_{i1}\times _2B_{i2})={\mathcal {E}}_1、~sum _{i=1}^{n}(\mathcal X\times _1C_{i1}\times _2C_{i2}+\mathcal Y\times _1D_{i1}\times _2D_{i2})={\mathcal {E}}_2,\) 没有矩阵化。此外,还介绍了新方法的一些特性。通过应用多线性算子,提出的方法被扩展到一般形式。还提供了一些数值示例,以比较所研究方法与一些现有流行算法的效率。最后,给出了一些结束语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信