{"title":"Free Convection Heat Transfer in Composite Enclosures with Porous and Nanofluid Layers","authors":"Abeer Alhashash","doi":"10.1155/2023/2088607","DOIUrl":null,"url":null,"abstract":"This work conducts a numerical investigation of convection heat transfer within two composite enclosures. These enclosures consist of porous and nanofluidic layers, where the porous layers are saturated with the same nanofluid. The first enclosure has two porous layers of different sizes and permeabilities, while the second is separated by a single porous layer. As the porous layer thickness approaches zero, both enclosures transition to clear nanofluid enclosures. The study uses the Navier–Stokes equations to govern fluid flow in the nanofluid domain and the Brinkman–Forchheimer extended Darcy model to describe flow within the saturated porous layer. Numerical solutions are obtained using an iterative finite difference method. Key parameters studied include the porous thickness (<span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 26.707 9.75571\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"></path></g></svg><span></span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"30.2891838 -8.6359 17.399 9.75571\" width=\"17.399pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.107,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"51.320183799999995 -8.6359 15.739 9.75571\" width=\"15.739pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,57.61,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,60.574,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>),</span></span> the nanoparticle volume fraction (<span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 26.707 12.3916\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"30.2891838 -8.96212 18.609 12.3916\" width=\"18.609pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,41.317,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"52.530183799999996 -8.96212 22.006 12.3916\" width=\"22.006pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,52.58,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.82,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,61.784,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,68.024,0)\"></path></g></svg>),</span></span> the thermal conductivity ratio (<span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 26.707 11.927\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"30.2891838 -8.6359 24.496 11.927\" width=\"24.496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,38.425,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.204,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"58.4171838 -8.6359 12.772 11.927\" width=\"12.772pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,58.467,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,64.707,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>),</span></span> and the Darcy number (<span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 34.317 12.7112\" width=\"34.317pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.527,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,18.087,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,26.686,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"37.899183799999996 -11.5914 27.801 12.7112\" width=\"27.801pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.949,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.907,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.119,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"69.33218380000001 -11.5914 23.271 12.7112\" width=\"23.271pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.382,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,75.622,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,81.909,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,87.469,-5.741)\"></path></g></svg>).</span></span> Key findings include the observation that the highest heat transfer is achieved at the highest concentration, regardless of the porous layer configuration, permeability value, or thermal conductivity ratio. Specifically, an augmentation in values of <svg height=\"16.8588pt\" style=\"vertical-align:-3.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.6773 21.614 16.8588\" width=\"21.614pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect height=\"0.996264\" width=\"9.96264\" x=\"3.93749\" y=\"-12.1921\"></rect><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.78,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,17.838,3.132)\"></path></g></svg> up to 22% is obtained as concentration is adjusted from 1% to 5%. Similarly, an augmentation in values of <svg height=\"16.8588pt\" style=\"vertical-align:-3.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.6773 24.6648 16.8588\" width=\"24.6648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect height=\"0.996264\" width=\"9.96264\" x=\"3.93749\" y=\"-12.1921\"></rect><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.78,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.838,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,20.941,3.132)\"><use xlink:href=\"#g190-74\"></use></g></svg> up to 25% is obtained as concentration is adjusted from 1% to 5%.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/2088607","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work conducts a numerical investigation of convection heat transfer within two composite enclosures. These enclosures consist of porous and nanofluidic layers, where the porous layers are saturated with the same nanofluid. The first enclosure has two porous layers of different sizes and permeabilities, while the second is separated by a single porous layer. As the porous layer thickness approaches zero, both enclosures transition to clear nanofluid enclosures. The study uses the Navier–Stokes equations to govern fluid flow in the nanofluid domain and the Brinkman–Forchheimer extended Darcy model to describe flow within the saturated porous layer. Numerical solutions are obtained using an iterative finite difference method. Key parameters studied include the porous thickness (), the nanoparticle volume fraction (), the thermal conductivity ratio (), and the Darcy number (). Key findings include the observation that the highest heat transfer is achieved at the highest concentration, regardless of the porous layer configuration, permeability value, or thermal conductivity ratio. Specifically, an augmentation in values of up to 22% is obtained as concentration is adjusted from 1% to 5%. Similarly, an augmentation in values of up to 25% is obtained as concentration is adjusted from 1% to 5%.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.