Free Convection Heat Transfer in Composite Enclosures with Porous and Nanofluid Layers

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Abeer Alhashash
{"title":"Free Convection Heat Transfer in Composite Enclosures with Porous and Nanofluid Layers","authors":"Abeer Alhashash","doi":"10.1155/2023/2088607","DOIUrl":null,"url":null,"abstract":"This work conducts a numerical investigation of convection heat transfer within two composite enclosures. These enclosures consist of porous and nanofluidic layers, where the porous layers are saturated with the same nanofluid. The first enclosure has two porous layers of different sizes and permeabilities, while the second is separated by a single porous layer. As the porous layer thickness approaches zero, both enclosures transition to clear nanofluid enclosures. The study uses the Navier–Stokes equations to govern fluid flow in the nanofluid domain and the Brinkman–Forchheimer extended Darcy model to describe flow within the saturated porous layer. Numerical solutions are obtained using an iterative finite difference method. Key parameters studied include the porous thickness (<span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 26.707 9.75571\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"></path></g></svg><span></span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"30.2891838 -8.6359 17.399 9.75571\" width=\"17.399pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.107,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"9.75571pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"51.320183799999995 -8.6359 15.739 9.75571\" width=\"15.739pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,57.61,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,60.574,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>),</span></span> the nanoparticle volume fraction (<span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 26.707 12.3916\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"30.2891838 -8.96212 18.609 12.3916\" width=\"18.609pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,41.317,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"12.3916pt\" style=\"vertical-align:-3.42948pt\" version=\"1.1\" viewbox=\"52.530183799999996 -8.96212 22.006 12.3916\" width=\"22.006pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,52.58,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.82,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,61.784,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,68.024,0)\"></path></g></svg>),</span></span> the thermal conductivity ratio (<span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 26.707 11.927\" width=\"26.707pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.076,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"30.2891838 -8.6359 24.496 11.927\" width=\"24.496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.339,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,38.425,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.204,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"58.4171838 -8.6359 12.772 11.927\" width=\"12.772pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,58.467,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,64.707,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>),</span></span> and the Darcy number (<span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 34.317 12.7112\" width=\"34.317pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.527,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,18.087,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,26.686,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"37.899183799999996 -11.5914 27.801 12.7112\" width=\"27.801pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.949,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.907,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.119,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"12.7112pt\" style=\"vertical-align:-1.1198pt\" version=\"1.1\" viewbox=\"69.33218380000001 -11.5914 23.271 12.7112\" width=\"23.271pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.382,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,75.622,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,81.909,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,87.469,-5.741)\"></path></g></svg>).</span></span> Key findings include the observation that the highest heat transfer is achieved at the highest concentration, regardless of the porous layer configuration, permeability value, or thermal conductivity ratio. Specifically, an augmentation in values of <svg height=\"16.8588pt\" style=\"vertical-align:-3.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.6773 21.614 16.8588\" width=\"21.614pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect height=\"0.996264\" width=\"9.96264\" x=\"3.93749\" y=\"-12.1921\"></rect><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.78,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,17.838,3.132)\"></path></g></svg> up to 22% is obtained as concentration is adjusted from 1% to 5%. Similarly, an augmentation in values of <svg height=\"16.8588pt\" style=\"vertical-align:-3.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.6773 24.6648 16.8588\" width=\"24.6648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect height=\"0.996264\" width=\"9.96264\" x=\"3.93749\" y=\"-12.1921\"></rect><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.78,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.838,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,20.941,3.132)\"><use xlink:href=\"#g190-74\"></use></g></svg> up to 25% is obtained as concentration is adjusted from 1% to 5%.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/2088607","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work conducts a numerical investigation of convection heat transfer within two composite enclosures. These enclosures consist of porous and nanofluidic layers, where the porous layers are saturated with the same nanofluid. The first enclosure has two porous layers of different sizes and permeabilities, while the second is separated by a single porous layer. As the porous layer thickness approaches zero, both enclosures transition to clear nanofluid enclosures. The study uses the Navier–Stokes equations to govern fluid flow in the nanofluid domain and the Brinkman–Forchheimer extended Darcy model to describe flow within the saturated porous layer. Numerical solutions are obtained using an iterative finite difference method. Key parameters studied include the porous thickness (), the nanoparticle volume fraction (), the thermal conductivity ratio (), and the Darcy number (). Key findings include the observation that the highest heat transfer is achieved at the highest concentration, regardless of the porous layer configuration, permeability value, or thermal conductivity ratio. Specifically, an augmentation in values of up to 22% is obtained as concentration is adjusted from 1% to 5%. Similarly, an augmentation in values of up to 25% is obtained as concentration is adjusted from 1% to 5%.
多孔层和纳米流体层复合围护结构中的自由对流传热
本研究对两个复合围护结构内的对流传热进行了数值研究。这些外壳由多孔层和纳米流体层组成,多孔层中饱含相同的纳米流体。第一个外壳有两个大小和渗透率不同的多孔层,而第二个外壳由一个多孔层隔开。当多孔层厚度趋近于零时,两个外壳都会过渡到透明的纳米流体外壳。研究使用纳维-斯托克斯方程来控制纳米流体域中的流体流动,并使用布林克曼-福克海默扩展达西模型来描述饱和多孔层内的流动。数值求解采用迭代有限差分法。研究的主要参数包括多孔厚度()、纳米粒子体积分数()、导热比()和达西数()。主要发现包括:无论多孔层构造、渗透率值或导热率如何,在最高浓度时都能实现最高传热。具体来说,当浓度从 1%调整到 5%时,传热值最多可增加 22%。同样,当浓度从 1%调整到 5%时,数值最多可增加 25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信