Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL
Minhua Ai, Zihang Peng, Xidi Li, Faryal Idrees, Xiangwen Zhang, Ji-Jun Zou, Lun Pan
{"title":"Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis","authors":"Minhua Ai, Zihang Peng, Xidi Li, Faryal Idrees, Xiangwen Zhang, Ji-Jun Zou, Lun Pan","doi":"10.1016/j.gee.2023.12.001","DOIUrl":null,"url":null,"abstract":"<p>Charge separation is critical for achieving efficient solar-to-hydrogen conversion, whereas piezoelectric-enhanced photoelectrochemical (PEC) systems can effectively modulate band bending and charge migration. Herein, we design an n-TiO<sub>2</sub>/BaTiO<sub>3</sub>/p-TiO<sub>2</sub> (TBTm) heterojunction in which the piezoelectric BaTiO<sub>3</sub> layer is sandwiched between n-TiO<sub>2</sub> and p-TiO<sub>2</sub>. The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime. Consequently, the TBT3 achieves a prominent photocurrent density, as high as 2.13 mA∙cm<sup>-2</sup> at 1.23 V versus reversible hydrogen electrode (RHE), which is 2.4- and 1.5-times higher than TiO<sub>2</sub> and TiO<sub>2</sub>-BaTiO<sub>3</sub> heterojunction, respectively. Driven by mechanical deformation, the induced dipole polarization can further regulate built-in electric fields, and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO<sub>2</sub> at 1.23 V <em>vs.</em> RHE due to the construction of piezoelectric-heterostructures. This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"37 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.12.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Charge separation is critical for achieving efficient solar-to-hydrogen conversion, whereas piezoelectric-enhanced photoelectrochemical (PEC) systems can effectively modulate band bending and charge migration. Herein, we design an n-TiO2/BaTiO3/p-TiO2 (TBTm) heterojunction in which the piezoelectric BaTiO3 layer is sandwiched between n-TiO2 and p-TiO2. The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime. Consequently, the TBT3 achieves a prominent photocurrent density, as high as 2.13 mA∙cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), which is 2.4- and 1.5-times higher than TiO2 and TiO2-BaTiO3 heterojunction, respectively. Driven by mechanical deformation, the induced dipole polarization can further regulate built-in electric fields, and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO2 at 1.23 V vs. RHE due to the construction of piezoelectric-heterostructures. This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system.

Abstract Image

用于高效光电催化的压电增强型 n-TiO2/BaTiO3/p-TiO2 异质结
电荷分离是实现高效太阳能-氢转换的关键,而压电增强型光电化学(PEC)系统可以有效调节带弯曲和电荷迁移。在这里,我们设计了一种 n-TiO2/BaTiO3/p-TiO2(TBTm)异质结,其中压电 BaTiO3 层夹在 n-TiO2 和 p-TiO2 之间。TBTm 的内置电场可提供强大的驱动力,加速载流子分离并延长载流子寿命。因此,TBT3 实现了很高的光电流密度,在 1.23 V 电压下相对于可逆氢电极(RHE)高达 2.13 mA∙cm-2,分别是 TiO2 和 TiO2-BaTiO3 异质结的 2.4 倍和 1.5 倍。在机械形变的驱动下,诱导偶极极化可进一步调节内置电场,由于构建了压电异质结构,TBT3-800 在 1.23 V 对 RHE 时的压电光电流密度是 TiO2 的 2.84 倍。这项研究为 PEC 系统提供了一种压电极化策略,用于调节异质结的内置电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
文献相关原料
公司名称 产品信息 采购帮参考价格
百灵威 Tetrabutylammonium hydroxide
¥20.00~¥22032.24
希恩思 Diethylene glycol
百灵威 Tetrabutylammonium hydroxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信