{"title":"Fleming–Viot couples live forever","authors":"Mateusz Kwaśnicki","doi":"10.1007/s00440-023-01247-z","DOIUrl":null,"url":null,"abstract":"<p>We prove a non-extinction result for Fleming–Viot-type systems of two particles with dynamics described by an arbitrary symmetric Hunt process under the assumption that the reference measure is finite. Additionally, we describe an invariant measure for the system, we discuss its ergodicity, and we prove that the reference measure is a stationary measure for the embedded Markov chain of positions of the surviving particle at successive branching times.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01247-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We prove a non-extinction result for Fleming–Viot-type systems of two particles with dynamics described by an arbitrary symmetric Hunt process under the assumption that the reference measure is finite. Additionally, we describe an invariant measure for the system, we discuss its ergodicity, and we prove that the reference measure is a stationary measure for the embedded Markov chain of positions of the surviving particle at successive branching times.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.