Reviving Delayed Dynamics

Kenta Ohira, Toru Ohira
{"title":"Reviving Delayed Dynamics","authors":"Kenta Ohira, Toru Ohira","doi":"arxiv-2312.04848","DOIUrl":null,"url":null,"abstract":"We introduce a delay differential equation that manifests a distinctive\ndynamical behavior. Specifically, the transient dynamics of this equation\ndemonstrate a unique ``reviving\" amplitude phenomenon within certain ranges of\ndelay values. In this intriguing phenomenon, the amplitude initially decreases\ntowards a fixed point until a specific time point, after which it ultimately\ndiverges. Our analysis encompasses both analytical and numerical approaches,\nincorporating an approximation using the Lambert W function. The derived\napproximate solution effectively captures the qualitative aspects of the\nreviving dynamics across various delay values.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a delay differential equation that manifests a distinctive dynamical behavior. Specifically, the transient dynamics of this equation demonstrate a unique ``reviving" amplitude phenomenon within certain ranges of delay values. In this intriguing phenomenon, the amplitude initially decreases towards a fixed point until a specific time point, after which it ultimately diverges. Our analysis encompasses both analytical and numerical approaches, incorporating an approximation using the Lambert W function. The derived approximate solution effectively captures the qualitative aspects of the reviving dynamics across various delay values.
恢复延迟动力
我们引入了一个延迟微分方程,它表现出一种独特的动力学行为。具体来说,该方程的瞬态动力学在一定的延迟值范围内表现出独特的 "复苏 "振幅现象。在这一引人入胜的现象中,振幅最初会向一个固定点下降,直到一个特定的时间点,之后振幅最终会发散。我们的分析包括分析和数值方法,并使用兰伯特 W 函数进行近似。推导出的近似解有效地捕捉到了不同延迟值下的生存动力学的定性方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信