SO$(2,n)$-compatible embeddings of conformally flat $n$-dimensional submanifolds in $\mathbb{R}^{n+2}$

E. Huguet, J. Queva, J. Renaud
{"title":"SO$(2,n)$-compatible embeddings of conformally flat $n$-dimensional submanifolds in $\\mathbb{R}^{n+2}$","authors":"E. Huguet, J. Queva, J. Renaud","doi":"arxiv-2312.05049","DOIUrl":null,"url":null,"abstract":"We describe embeddings of $n$-dimensional Lorentzian manifolds, including\nFriedmann-Lema\\^itre-Robertson-Walker spaces, in $\\mathbb{R}^{n+2}$ such that\nthe metrics of the submanifolds are inherited by a restriction from that of\n$\\mathbb{R}^{n+2}$, and the action of the linear group SO$(2, n)$ of the\nambient space reduces to conformal transformations on the submanifolds.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe embeddings of $n$-dimensional Lorentzian manifolds, including Friedmann-Lema\^itre-Robertson-Walker spaces, in $\mathbb{R}^{n+2}$ such that the metrics of the submanifolds are inherited by a restriction from that of $\mathbb{R}^{n+2}$, and the action of the linear group SO$(2, n)$ of the ambient space reduces to conformal transformations on the submanifolds.
$\mathbb{R}^{n+2}$中共形平坦的$n$维子漫游的SO$(2,n)$兼容嵌入
我们描述了$n$维洛伦兹流形(包括弗里德曼-勒马/^itre-罗伯逊-沃克空间)在$\mathbb{R}^{n+2}$中的嵌入,这样子流形的度量通过限制继承自$\mathbb{R}^{n+2}$的度量,而周围空间的线性群SO$(2, n)$的作用在子流形上简化为共形变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信