Explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral methods for the Dirac equation in the simultaneously massless and nonrelativistic regime
{"title":"Explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral methods for the Dirac equation in the simultaneously massless and nonrelativistic regime","authors":"Jiyong Li","doi":"10.1007/s10092-023-00554-0","DOIUrl":null,"url":null,"abstract":"<p>We propose two explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral (SPEWIFP) methods for the Dirac equation in the simultaneously massless and nonrelativistic regime. In this regime, the solution of Dirac equation is highly oscillatory in time because of the small parameter <span>\\(0 <\\varepsilon \\ll 1\\)</span> which is inversely proportional to the speed of light. The proposed methods are proved to be time symmetric, stable only under the condition <span>\\(\\tau \\lesssim 1\\)</span> and preserve the modified energy and modified mass in the discrete level. Although our methods can only preserve the modified energy and modified mass instead of the original energy and mass, our methods are explicit and greatly reduce the computational cost compared to the traditional structure-preserving methods which are often implicit. Through rigorous error analysis, we give the error bounds of the methods at <span>\\(O(h^{m_0} + \\tau ^2/\\varepsilon ^2)\\)</span> where <i>h</i> is mesh size, <span>\\(\\tau \\)</span> is time step and the integer <span>\\(m_0\\)</span> is determined by the regularity conditions. These error bounds indicate that, to obtain the correct numerical solution in the simultaneously massless and nonrelativistic regime, our methods request the <span>\\(\\varepsilon \\)</span>-scalability as <span>\\(h = O(1)\\)</span> and <span>\\(\\tau = O(\\varepsilon )\\)</span> which is better than the <span>\\(\\varepsilon \\)</span>-scalability of the finite difference (FD) methods: <span>\\(h =O(\\varepsilon ^{1/2})\\)</span> and <span>\\(\\tau = O(\\varepsilon ^{3/2})\\)</span>. Numerical experiments confirm that the theoretical results in this paper are correct.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00554-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose two explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral (SPEWIFP) methods for the Dirac equation in the simultaneously massless and nonrelativistic regime. In this regime, the solution of Dirac equation is highly oscillatory in time because of the small parameter \(0 <\varepsilon \ll 1\) which is inversely proportional to the speed of light. The proposed methods are proved to be time symmetric, stable only under the condition \(\tau \lesssim 1\) and preserve the modified energy and modified mass in the discrete level. Although our methods can only preserve the modified energy and modified mass instead of the original energy and mass, our methods are explicit and greatly reduce the computational cost compared to the traditional structure-preserving methods which are often implicit. Through rigorous error analysis, we give the error bounds of the methods at \(O(h^{m_0} + \tau ^2/\varepsilon ^2)\) where h is mesh size, \(\tau \) is time step and the integer \(m_0\) is determined by the regularity conditions. These error bounds indicate that, to obtain the correct numerical solution in the simultaneously massless and nonrelativistic regime, our methods request the \(\varepsilon \)-scalability as \(h = O(1)\) and \(\tau = O(\varepsilon )\) which is better than the \(\varepsilon \)-scalability of the finite difference (FD) methods: \(h =O(\varepsilon ^{1/2})\) and \(\tau = O(\varepsilon ^{3/2})\). Numerical experiments confirm that the theoretical results in this paper are correct.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.