Stein-type control function maximum likelihood estimator for the probit model in the presence of endogeneity

IF 2 Q2 ECONOMICS
Muhammad Qasim, Kristofer Månsson, Pär Sjölander, B. M. Golam Kibria
{"title":"Stein-type control function maximum likelihood estimator for the probit model in the presence of endogeneity","authors":"Muhammad Qasim, Kristofer Månsson, Pär Sjölander, B. M. Golam Kibria","doi":"10.1016/j.ecosta.2023.12.001","DOIUrl":null,"url":null,"abstract":"<p>A Stein-type control function maximum likelihood (CFML) estimator is suggested for the probit model in the presence of endogeneity. This novel estimator combines the probit maximum likelihood and CFML estimators. The asymptotic distribution and risk function for the new estimator is derived. It is demonstrated that, subject to certain conditions of the shrinkage parameter, the asymptotic risk of the new estimator is strictly smaller than the risk of the CFML. Monte Carlo simulations illustrate the method's superiority in finite samples. The method is also applied to analyze the impact of managerial incentives on the use of foreign-exchange derivatives.</p>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"87 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2023.12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Stein-type control function maximum likelihood (CFML) estimator is suggested for the probit model in the presence of endogeneity. This novel estimator combines the probit maximum likelihood and CFML estimators. The asymptotic distribution and risk function for the new estimator is derived. It is demonstrated that, subject to certain conditions of the shrinkage parameter, the asymptotic risk of the new estimator is strictly smaller than the risk of the CFML. Monte Carlo simulations illustrate the method's superiority in finite samples. The method is also applied to analyze the impact of managerial incentives on the use of foreign-exchange derivatives.

存在内生性的概率模型的斯坦因型控制函数最大似然估计器
针对存在内生性的 probit 模型,提出了一种 Stein 型控制函数最大似然(CFML)估计方法。这种新型估计器结合了 probit 最大似然估计器和 CFML 估计器。推导了新估计器的渐近分布和风险函数。结果表明,在收缩参数的某些条件下,新估计器的渐近风险严格小于 CFML 的风险。蒙特卡罗模拟说明了该方法在有限样本中的优越性。该方法还被用于分析管理激励对外汇衍生品使用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信