Chord measures in integral geometry and their Minkowski problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Erwin Lutwak, Dongmeng Xi, Deane Yang, Gaoyong Zhang
{"title":"Chord measures in integral geometry and their Minkowski problems","authors":"Erwin Lutwak,&nbsp;Dongmeng Xi,&nbsp;Deane Yang,&nbsp;Gaoyong Zhang","doi":"10.1002/cpa.22190","DOIUrl":null,"url":null,"abstract":"<p>To the families of geometric measures of convex bodies (the area measures of Aleksandrov-Fenchel-Jessen, the curvature measures of Federer, and the recently discovered dual curvature measures) a new family is added. The new family of geometric measures, called chord measures, arises from the study of integral geometric invariants of convex bodies. The Minkowski problems for the new measures and their logarithmic variants are proposed and attacked. When the given ‘data’ is sufficiently regular, these problems are a new type of fully nonlinear partial differential equations involving dual quermassintegrals of functions. Major cases of these Minkowski problems are solved without regularity assumptions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22190","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To the families of geometric measures of convex bodies (the area measures of Aleksandrov-Fenchel-Jessen, the curvature measures of Federer, and the recently discovered dual curvature measures) a new family is added. The new family of geometric measures, called chord measures, arises from the study of integral geometric invariants of convex bodies. The Minkowski problems for the new measures and their logarithmic variants are proposed and attacked. When the given ‘data’ is sufficiently regular, these problems are a new type of fully nonlinear partial differential equations involving dual quermassintegrals of functions. Major cases of these Minkowski problems are solved without regularity assumptions.

积分几何中的弦量及其闵科夫斯基问题
在凸体的几何度量系列(亚历山大罗夫-芬切尔-杰森的面积度量、费德勒的曲率度量以及最近发现的对偶曲率度量)之外,又增加了一个新的系列。这一新的几何度量系被称为弦度量,源于对凸体积分几何不变量的研究。我们提出并解决了新度量及其对数变体的闵科夫斯基问题。当给定的 "数据 "足够规则时,这些问题是一种新型的完全非线性偏微分方程,涉及函数的对偶质点积分。这些闵科夫斯基问题的主要情况无需正则假设即可求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信