A generalized finite difference method for 2D dynamic crack analysis

IF 1.4 Q2 MATHEMATICS, APPLIED
Bingrui Ju , Boyang Yu , Zhiyuan Zhou
{"title":"A generalized finite difference method for 2D dynamic crack analysis","authors":"Bingrui Ju ,&nbsp;Boyang Yu ,&nbsp;Zhiyuan Zhou","doi":"10.1016/j.rinam.2023.100418","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100418"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742300064X/pdfft?md5=fd874dbd9bfe995f3593f0c039d8b701&pid=1-s2.0-S259003742300064X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742300064X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.

用于二维动态裂纹分析的广义有限差分法
本文提出了一种利用广义有限差分法(GFDM)对瞬态弹性力学裂缝进行高效、精确分析的新框架。该方法首先将求解域离散为一组重叠的小子域,然后在每个子域中使用局部泰勒级数展开和移动最小平方逼近法逼近未知函数及其导数。在裂纹尖端附近区域,局部子域中使用的泰勒级数会自动增加,以适当描述近尖端位移和应力场的局部渐近行为。采用与路径无关的 J 积分和子域技术来计算开裂体的动态应力强度因子(SIF)。给出了均匀和可变加载条件下动态 SIF 的初步数值实验,以显示本方法在瞬态弹性力学裂纹分析中的高效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信