The Logic ILP for Intuitionistic Reasoning About Probability

Pub Date : 2023-12-09 DOI:10.1007/s11225-023-10084-z
Angelina Ilić-Stepić, Zoran Ognjanović, Aleksandar Perović
{"title":"The Logic ILP for Intuitionistic Reasoning About Probability","authors":"Angelina Ilić-Stepić, Zoran Ognjanović, Aleksandar Perović","doi":"10.1007/s11225-023-10084-z","DOIUrl":null,"url":null,"abstract":"<p>We offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form <span>\\(\\langle H, \\mu \\rangle \\)</span> that needs not be a probability space. More precisely, though <i>H</i> needs not be a Boolean algebra, the corresponding monotone function (we call it measure) <span>\\(\\mu : H \\longrightarrow [0,1]_{\\mathbb {Q}}\\)</span> satisfies the following condition: if <span>\\(\\alpha \\)</span>, <span>\\(\\beta \\)</span>, <span>\\(\\alpha \\wedge \\beta \\)</span>, <span>\\(\\alpha \\vee \\beta \\in H\\)</span>, then <span>\\(\\mu (\\alpha \\vee \\beta ) = \\mu (\\alpha ) + \\mu (\\beta ) - \\mu (\\alpha \\wedge \\beta )\\)</span>. Since the range of <span>\\(\\mu \\)</span> is the set <span>\\([0,1]_{\\mathbb {Q}}\\)</span> of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10084-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form \(\langle H, \mu \rangle \) that needs not be a probability space. More precisely, though H needs not be a Boolean algebra, the corresponding monotone function (we call it measure) \(\mu : H \longrightarrow [0,1]_{\mathbb {Q}}\) satisfies the following condition: if \(\alpha \), \(\beta \), \(\alpha \wedge \beta \), \(\alpha \vee \beta \in H\), then \(\mu (\alpha \vee \beta ) = \mu (\alpha ) + \mu (\beta ) - \mu (\alpha \wedge \beta )\). Since the range of \(\mu \) is the set \([0,1]_{\mathbb {Q}}\) of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability.

分享
查看原文
概率直觉推理的逻辑 ILP
我们为概率推理的直观形式化提供了现有方法之外的另一种方法。就克里普克模型而言,每个可能的世界都有一个形式为 \(\langle H, \mu \rangle \)的结构,它不一定是一个概率空间。更确切地说,虽然H不一定是布尔代数,但相应的单调函数(我们称之为度量)\(\mu : H \longrightarrow [0,1]_{\mathbb {Q}}\) 满足以下条件:if \(\alpha \), \(\beta \), \(\alpha \wedge \beta \), \(\alpha \vee \beta \ in H\), then \(\mu (\alpha \vee \beta ) = \mu (\alpha ) + \mu (\beta ) - \mu (\alpha \wedge \beta )\).由于 \(\mu \)的范围是实数单位区间的有理数集 \([0,1]_{mathbb{Q}}\),所以我们的逻辑并不紧凑。为了获得强完整公理化,我们引入了一个具有可数前提集的无穷推理规则。主要的技术结果是强完备性和可判定性的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信