Independently convolutional gated recurrent neural unit for space-based ADS-B signal separation with single antenna

IF 1.9 4区 工程技术 Q2 Engineering
Chuankun Li, Yan Bi
{"title":"Independently convolutional gated recurrent neural unit for space-based ADS-B signal separation with single antenna","authors":"Chuankun Li, Yan Bi","doi":"10.1186/s13634-023-01089-w","DOIUrl":null,"url":null,"abstract":"<p>Automatic Dependent Surveillance-Broadcast (ADS-B) is a critical technology to transform aircraft navigation by improving safety and overall effectiveness in the aviation industry. However, overlapping of ADS-B signals is a large challenge, especially for space-based ADS-B systems. Existing traditional methods are not effective when dealing with cases that overlapped signals with small difference (such as power difference and carrier frequency difference) require to be separated. In order to generate an effective separation performance of the ADS-B signals by exploring its temporal relationship, Independently Convolutional Gated Recurrent Neural Unit (Ind-CGRU) is presented for encoder–decoder network construction. Experimental results on the dataset SR-ADSB demonstrate that the proposed Ind-CGRU achieves good performance.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01089-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic Dependent Surveillance-Broadcast (ADS-B) is a critical technology to transform aircraft navigation by improving safety and overall effectiveness in the aviation industry. However, overlapping of ADS-B signals is a large challenge, especially for space-based ADS-B systems. Existing traditional methods are not effective when dealing with cases that overlapped signals with small difference (such as power difference and carrier frequency difference) require to be separated. In order to generate an effective separation performance of the ADS-B signals by exploring its temporal relationship, Independently Convolutional Gated Recurrent Neural Unit (Ind-CGRU) is presented for encoder–decoder network construction. Experimental results on the dataset SR-ADSB demonstrate that the proposed Ind-CGRU achieves good performance.

Abstract Image

利用单天线分离天基 ADS-B 信号的独立卷积门控递归神经单元
自动监视-广播(ADS-B)是通过提高航空业的安全性和整体效率来改变飞机导航的一项关键技术。然而,ADS-B 信号的重叠是一个巨大的挑战,尤其是对于天基 ADS-B 系统而言。现有的传统方法在处理需要分离差异较小(如功率差和载波频率差)的重叠信号时效果不佳。为了通过探索 ADS-B 信号的时间关系产生有效的分离性能,提出了用于构建编码器-解码器网络的独立卷积门控循环神经单元(Ind-CGRU)。在数据集 SR-ADSB 上的实验结果表明,所提出的 Ind-CGRU 实现了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信