Some Operator Ideal Properties of Volterra Operators on Bergman and Bloch Spaces

Pub Date : 2023-12-10 DOI:10.1007/s00020-023-02742-7
Joelle Jreis, Pascal Lefèvre
{"title":"Some Operator Ideal Properties of Volterra Operators on Bergman and Bloch Spaces","authors":"Joelle Jreis, Pascal Lefèvre","doi":"10.1007/s00020-023-02742-7","DOIUrl":null,"url":null,"abstract":"<p>We characterize the integration operators <span>\\(V_g\\)</span> with symbol <i>g</i> for which <span>\\(V_g\\)</span> acts as an absolutely summing operator on weighted Bloch spaces <span>\\(\\mathcal {B}^{\\beta }\\)</span> and on weighted Bergman spaces <span>\\(\\mathscr {A}^p_\\alpha \\)</span>. We show that <span>\\(V_g\\)</span> is <i>r</i>-summing on <span>\\(\\mathscr {A}^p_\\alpha \\)</span>, <span>\\(1 \\le p &lt;\\infty \\)</span>, if and only if <i>g</i> belongs to a suitable Besov space. We also show that there is no non trivial nuclear Volterra operators <span>\\(V_g\\)</span> on Bloch spaces and on Bergman spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-023-02742-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the integration operators \(V_g\) with symbol g for which \(V_g\) acts as an absolutely summing operator on weighted Bloch spaces \(\mathcal {B}^{\beta }\) and on weighted Bergman spaces \(\mathscr {A}^p_\alpha \). We show that \(V_g\) is r-summing on \(\mathscr {A}^p_\alpha \), \(1 \le p <\infty \), if and only if g belongs to a suitable Besov space. We also show that there is no non trivial nuclear Volterra operators \(V_g\) on Bloch spaces and on Bergman spaces.

分享
查看原文
伯格曼和布洛赫空间上 Volterra 算子的一些算子理想特性
我们描述了符号为 g 的积分算子 \(V_g\),对于这些算子,\(V_g\) 在加权布洛赫空间 \(\mathcal {B}^{\beta }\) 和加权伯格曼空间 \(\mathscr {A}^p_\alpha \)上作为绝对求和算子。我们证明,当且仅当g属于一个合适的贝索夫空间时,\(V_g\)在\(\mathscr {A}^p_\alpha \)、\(1 \le p <\infty \)上是r求和的。我们还证明了在布洛赫空间和贝格曼空间上不存在非微不足道的核 Volterra 算子 \(V_g\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信