Development of an Impact Energy Absorption Structure by an Arc Shape Stroke Origami Type Hydraulic Damper

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Jingchao Guan, Yuan Yao, Wei Zhao, Ichiro Hagiwara, Xilu Zhao
{"title":"Development of an Impact Energy Absorption Structure by an Arc Shape Stroke Origami Type Hydraulic Damper","authors":"Jingchao Guan, Yuan Yao, Wei Zhao, Ichiro Hagiwara, Xilu Zhao","doi":"10.1155/2023/4578613","DOIUrl":null,"url":null,"abstract":"Cylindrical hydraulic dampers used to reduce impacts and vibrations typically have linear strokes. In this study, a new arc-shaped stroke-type origami hydraulic damper with a nonlinear damping performance was proposed. By examining the damping effect of the origami hydraulic damper, the damping force was found to be proportional to the square of the motion velocity. A nonlinear dynamics governing equation was established using the derived formula for the damping force of the origami hydraulic damper, and a numerical analysis using the Runge–Kutta method was established. An impact test device with an arc-shaped stroke was developed, and the error between the numerical analysis value of the impact displacement and the measured experimental value was confirmed to be sufficiently small. An impact verification experiment confirmed that the damping effect of the origami hydraulic damper increases with the input energy of the impact. By varying the diameter of the orifice hole, which is an important design factor for an origami hydraulic damper, the damping effect of the origami hydraulic damper was found to increase as the diameter of the orifice hole decreased. To examine the effect of the type of hydraulic oil inside the origami hydraulic damper, water and edible oil were used to conduct impact verification experiments, and it was found that the effect on the impact damping effect was relatively small.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4578613","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cylindrical hydraulic dampers used to reduce impacts and vibrations typically have linear strokes. In this study, a new arc-shaped stroke-type origami hydraulic damper with a nonlinear damping performance was proposed. By examining the damping effect of the origami hydraulic damper, the damping force was found to be proportional to the square of the motion velocity. A nonlinear dynamics governing equation was established using the derived formula for the damping force of the origami hydraulic damper, and a numerical analysis using the Runge–Kutta method was established. An impact test device with an arc-shaped stroke was developed, and the error between the numerical analysis value of the impact displacement and the measured experimental value was confirmed to be sufficiently small. An impact verification experiment confirmed that the damping effect of the origami hydraulic damper increases with the input energy of the impact. By varying the diameter of the orifice hole, which is an important design factor for an origami hydraulic damper, the damping effect of the origami hydraulic damper was found to increase as the diameter of the orifice hole decreased. To examine the effect of the type of hydraulic oil inside the origami hydraulic damper, water and edible oil were used to conduct impact verification experiments, and it was found that the effect on the impact damping effect was relatively small.
利用弧形冲程折纸式液压阻尼器开发冲击能量吸收结构
用于减少冲击和振动的圆柱形液压阻尼器通常具有线性冲程。本研究提出了一种具有非线性阻尼性能的新型弧形行程式折纸液压阻尼器。通过研究折纸液压阻尼器的阻尼效果,发现阻尼力与运动速度的平方成正比。利用推导出的折纸液压阻尼器阻尼力公式建立了非线性动力学控制方程,并利用 Runge-Kutta 方法进行了数值分析。开发了具有弧形行程的冲击试验装置,并证实冲击位移的数值分析值与测量的实验值之间的误差足够小。冲击验证实验证实,折纸液压阻尼器的阻尼效果随冲击输入能量的增加而增加。孔径是折纸液压阻尼器的一个重要设计因素,通过改变孔径,发现折纸液压阻尼器的阻尼效果随着孔径的减小而增加。为了研究折纸液压阻尼器内部液压油类型的影响,使用水和食用油进行了冲击验证实验,结果发现它们对冲击阻尼效果的影响相对较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信