The time-like minimal surface equation in Minkowski space: low regularity solutions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Albert Ai, Mihaela Ifrim, Daniel Tataru
{"title":"The time-like minimal surface equation in Minkowski space: low regularity solutions","authors":"Albert Ai, Mihaela Ifrim, Daniel Tataru","doi":"10.1007/s00222-023-01231-3","DOIUrl":null,"url":null,"abstract":"<p>It has long been conjectured that for nonlinear wave equations that satisfy a nonlinear form of the null condition, the low regularity well-posedness theory can be significantly improved compared to the sharp results of Smith-Tataru for the generic case. The aim of this article is to prove the first result in this direction, namely for the time-like minimal surface equation in the Minkowski space-time. Further, our improvement is substantial, namely by <span>\\(3/8\\)</span> derivatives in two space dimensions and by <span>\\(1/4\\)</span> derivatives in higher dimensions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01231-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

It has long been conjectured that for nonlinear wave equations that satisfy a nonlinear form of the null condition, the low regularity well-posedness theory can be significantly improved compared to the sharp results of Smith-Tataru for the generic case. The aim of this article is to prove the first result in this direction, namely for the time-like minimal surface equation in the Minkowski space-time. Further, our improvement is substantial, namely by \(3/8\) derivatives in two space dimensions and by \(1/4\) derivatives in higher dimensions.

闵科夫斯基空间中的类时间极小曲面方程:低正则解
人们一直猜想,对于满足空条件非线性形式的非线性波方程,与 Smith-Tataru 针对一般情况的尖锐结果相比,低正则性好求理论可以得到显著改进。本文的目的是证明这个方向上的第一个结果,即闵科夫斯基时空中的类时间极小曲面方程。此外,我们的改进是实质性的,即在两个空间维度上通过\(3/8\)导数,在更高维度上通过\(1/4\)导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信