On best p-norm approximation of discrete data by polynomials

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Michael S Floater
{"title":"On best p-norm approximation of discrete data by polynomials","authors":"Michael S Floater","doi":"10.1093/imanum/drad086","DOIUrl":null,"url":null,"abstract":"In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.
论多项式对离散数据的最佳 p-norm 近似值
在本论文中,我们推导出了一个问题的解决方案,即找到一个度数最多为 $n$ 的多项式,该多项式在 $l_{p}$ 准则下最接近 $n+2$ 点的数据。与 de la Vallée Poussin 的一个结果类似,我们可以将解表示为 $n+1$ 点子集上的拉格朗日内插值的凸组合,并且误差在符号上摆动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信