{"title":"On best p-norm approximation of discrete data by polynomials","authors":"Michael S Floater","doi":"10.1093/imanum/drad086","DOIUrl":null,"url":null,"abstract":"In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.