\(\mu \)-Pseudo almost periodic solutions to some semilinear boundary equations on networks

IF 0.9 Q2 MATHEMATICS
Thami Akrid, Mahmoud Baroun
{"title":"\\(\\mu \\)-Pseudo almost periodic solutions to some semilinear boundary equations on networks","authors":"Thami Akrid,&nbsp;Mahmoud Baroun","doi":"10.1007/s13370-023-01148-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work deals with the existence and uniqueness of <span>\\(\\mu \\)</span>-pseudo almost periodic solutions to some transport processes along the edges of a finite network with inhomogeneous conditions in the vertices. For that, the strategy consists of seeing these systems as a particular case of the semilinear boundary evolution equations </p><div><div><span>$$\\begin{aligned} (SHBE)\\;{\\left\\{ \\begin{array}{ll} \\displaystyle {\\frac{du}{dt}} &amp;{}= A_{m} u(t)+f(t,u(t)),\\quad t\\in {\\mathbb {R}}, \\\\ L u(t)&amp;{} = g(t,u(t)) ,\\quad t \\in {\\mathbb {R}},\\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(A:= A_m|ker L\\)</span> generates a C<span>\\(_0\\)</span>-semigroup admitting an exponential dichotomy on a Banach space. Assuming that the forcing terms taking values in a state space and in a boundary space respectively are only <span>\\(\\mu \\)</span>-pseudo almost periodic in the sense of Stepanov, we show that (<i>SHBE</i>) has a unique <span>\\(\\mu \\)</span>-pseudo almost periodic solution which satisfies a variation of constant formula. Then we apply the previous result to obtain the existence and uniqueness of <span>\\(\\mu \\)</span>-pseudo almost periodic solution to our model of network.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01148-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with the existence and uniqueness of \(\mu \)-pseudo almost periodic solutions to some transport processes along the edges of a finite network with inhomogeneous conditions in the vertices. For that, the strategy consists of seeing these systems as a particular case of the semilinear boundary evolution equations

$$\begin{aligned} (SHBE)\;{\left\{ \begin{array}{ll} \displaystyle {\frac{du}{dt}} &{}= A_{m} u(t)+f(t,u(t)),\quad t\in {\mathbb {R}}, \\ L u(t)&{} = g(t,u(t)) ,\quad t \in {\mathbb {R}},\\ \end{array}\right. } \end{aligned}$$

where \(A:= A_m|ker L\) generates a C\(_0\)-semigroup admitting an exponential dichotomy on a Banach space. Assuming that the forcing terms taking values in a state space and in a boundary space respectively are only \(\mu \)-pseudo almost periodic in the sense of Stepanov, we show that (SHBE) has a unique \(\mu \)-pseudo almost periodic solution which satisfies a variation of constant formula. Then we apply the previous result to obtain the existence and uniqueness of \(\mu \)-pseudo almost periodic solution to our model of network.

\网络上一些半线性边界方程的伪近周期解
本研究涉及在顶点非均质条件下有限网络边缘某些传输过程的()伪近周期解的存在性和唯一性。为此,我们的策略是把这些系统看作半线性边界演化方程的一个特殊案例。\displaystyle {\frac{du}{dt}} &{}= A_{m} u(t)+f(t,u(t)),\quad t\in {\mathbb {R}}, \ L u(t)&{} = g(t,u(t)) ,\quad t\in {\mathbb {R}},\\\end{array}\right.}\end{aligned}$$where \(A:= A_m|ker L\) generates a C\(_0\)-semigroup admitting an exponential dichotomy on a Banach space.假设分别在状态空间和边界空间取值的强制项只是斯捷潘诺夫意义上的\(\mu \)-伪近周期,我们证明(SHBE)有一个唯一的\(\mu \)-伪近周期解,它满足常数的变化式。然后,我们将前面的结果应用到我们的网络模型中,得到了 \(\mu \)-伪几乎周期解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信