Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting

Emmanuel Abbe, Colin Sandon
{"title":"Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting","authors":"Emmanuel Abbe, Colin Sandon","doi":"arxiv-2312.04329","DOIUrl":null,"url":null,"abstract":"This paper shows that a class of codes such as Reed-Muller (RM) codes have\nvanishing bit-error probability below capacity on symmetric channels. The proof\nrelies on the notion of `camellia codes': a class of symmetric codes\ndecomposable into `camellias', i.e., set systems that differ from sunflowers by\nallowing for scattered petal overlaps. The proof then follows from a boosting\nargument on the camellia petals with second moment Fourier analysis. For\nerasure channels, this gives a self-contained proof of the bit-error result in\nKudekar et al.'17, without relying on sharp thresholds for monotone properties\nFriedgut-Kalai'96. For error channels, this gives a shortened proof of\nReeves-Pfister'23 with an exponentially tighter bound, and a proof variant of\nthe bit-error result in Abbe-Sandon'23. The control of the full (block) error\nprobability still requires Abbe-Sandon'23 for RM codes.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.
里德-穆勒码在容量以下误码概率消失:通过山茶花提升的简单严密证明
本文证明了在对称信道上,里德-穆勒(Reed-Muller,RM)码等一类码的比特误码率低于容量。证明依赖于 "山茶花码 "的概念:一类对称码可分解为 "山茶花",即不同于向日葵的集合系统,允许分散的花瓣重叠。然后,通过对山茶花花瓣的提升论证和第二矩傅里叶分析来进行证明。对于误差信道,这给出了库德卡尔等人'17 的比特误差结果的自足证明,而无需依赖单调特性弗里德古特-卡莱'96 的尖锐阈值。对于误差信道,这给出了里夫斯-菲斯特(Reeves-Pfister'23)的简短证明和指数级紧缩约束,以及阿贝-桑顿(Abbe-Sandon'23)的比特误差结果的证明变体。对于 RM 码,全(块)错误概率的控制仍然需要 Abbe-Sandon'23 的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信