{"title":"Improved uniform error bound on the time-splitting method for the long-time dynamics of the fractional nonlinear Schrödinger equation","authors":"Yue Feng, Ying Ma","doi":"10.4310/cms.2024.v22.n1.a1","DOIUrl":null,"url":null,"abstract":"We establish the improved uniform error bound on the time-splitting Fourier pseudospectral (TSFP) method for the long-time dynamics of the generalized fractional nonlinear Schrödinger equation (FNLSE) with $O(\\varepsilon^2)$-nonlinearity, where $\\varepsilon \\in (0,1]$ is a dimensionless parameter. Numerically, we discretize the FNLSE by the second-order Strang splitting method in time and Fourier pseudospectral method in space. Combining with energy method, we utilize the regularity compensation oscillation (RCO) technique to rigorously prove the improved uniform error bound at $O(h^{m_0} + \\varepsilon^2 \\tau^2)$ with the mesh size $h$ and time step $\\tau$ up to the long-time at $O(1 / \\varepsilon^2)$, which gains an additional $\\varepsilon^2$ in time compared with classical error estimates. The key idea behind the RCO technique is to analyze low frequency modes by phase cancellation and control high frequency modes by the regularity of the exact solution. With the help of the RCO technique, we relax some constraints in the previous proof for the improved uniform error bound and extend the result to more general cases. Finally, numerical examples are provided to confirm our improved uniform error bound and demonstrate its suitability in different cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n1.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the improved uniform error bound on the time-splitting Fourier pseudospectral (TSFP) method for the long-time dynamics of the generalized fractional nonlinear Schrödinger equation (FNLSE) with $O(\varepsilon^2)$-nonlinearity, where $\varepsilon \in (0,1]$ is a dimensionless parameter. Numerically, we discretize the FNLSE by the second-order Strang splitting method in time and Fourier pseudospectral method in space. Combining with energy method, we utilize the regularity compensation oscillation (RCO) technique to rigorously prove the improved uniform error bound at $O(h^{m_0} + \varepsilon^2 \tau^2)$ with the mesh size $h$ and time step $\tau$ up to the long-time at $O(1 / \varepsilon^2)$, which gains an additional $\varepsilon^2$ in time compared with classical error estimates. The key idea behind the RCO technique is to analyze low frequency modes by phase cancellation and control high frequency modes by the regularity of the exact solution. With the help of the RCO technique, we relax some constraints in the previous proof for the improved uniform error bound and extend the result to more general cases. Finally, numerical examples are provided to confirm our improved uniform error bound and demonstrate its suitability in different cases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.