Global mild solutions of the non-cutoff Vlasov–Poisson–Boltzmann system

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Hao Wang, Guangqing Wang
{"title":"Global mild solutions of the non-cutoff Vlasov–Poisson–Boltzmann system","authors":"Hao Wang, Guangqing Wang","doi":"10.4310/cms.2024.v22.n1.a5","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem on the Vlasov–Poisson–Boltzmann system in the torus domain. The Boltzmann collision kernel is assumed to be angular non-cutoff with $0 \\leq \\gamma \\lt 1$ and $1/2 \\leq s \\lt 1$, where $\\gamma, s$ are two parameters describing the kinetic and angular singularities, respectively. We obtain the global-in-time unique mild solutions, and prove that the solutions converge to the global Maxwellian with the large-time decay rate of $\\mathcal{O}(e^{-\\lambda t})$ in the $L^1_k L^2_v$-norm for some $\\lambda \\gt 0$. Furthermore, we justify the property of propagation of regularity of solutions in the spatial variable.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n1.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the Cauchy problem on the Vlasov–Poisson–Boltzmann system in the torus domain. The Boltzmann collision kernel is assumed to be angular non-cutoff with $0 \leq \gamma \lt 1$ and $1/2 \leq s \lt 1$, where $\gamma, s$ are two parameters describing the kinetic and angular singularities, respectively. We obtain the global-in-time unique mild solutions, and prove that the solutions converge to the global Maxwellian with the large-time decay rate of $\mathcal{O}(e^{-\lambda t})$ in the $L^1_k L^2_v$-norm for some $\lambda \gt 0$. Furthermore, we justify the property of propagation of regularity of solutions in the spatial variable.
非截止弗拉索夫-泊松-波尔兹曼系统的全局温和解
本文关注的是环域中 Vlasov-Poisson-Boltzmann 系统的考奇问题。假定玻尔兹曼碰撞内核是角非截断的,有$0 \leq \gamma \lt 1$和$1/2 \leq s \lt 1$,其中$\gamma, s$分别是描述动力学和角奇异性的两个参数。我们得到了全局时间内唯一的温和解,并证明这些解收敛于全局麦克斯韦值,对于某些 $\lambda \gt 0$,大时间衰减率为 $\mathcal{O}(e^{-\lambda t})$。此外,我们还证明了空间变量解的正则性传播特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信