Global mild solutions of the non-cutoff Vlasov–Poisson–Boltzmann system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Wang, Guangqing Wang
{"title":"Global mild solutions of the non-cutoff Vlasov–Poisson–Boltzmann system","authors":"Hao Wang, Guangqing Wang","doi":"10.4310/cms.2024.v22.n1.a5","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem on the Vlasov–Poisson–Boltzmann system in the torus domain. The Boltzmann collision kernel is assumed to be angular non-cutoff with $0 \\leq \\gamma \\lt 1$ and $1/2 \\leq s \\lt 1$, where $\\gamma, s$ are two parameters describing the kinetic and angular singularities, respectively. We obtain the global-in-time unique mild solutions, and prove that the solutions converge to the global Maxwellian with the large-time decay rate of $\\mathcal{O}(e^{-\\lambda t})$ in the $L^1_k L^2_v$-norm for some $\\lambda \\gt 0$. Furthermore, we justify the property of propagation of regularity of solutions in the spatial variable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n1.a5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the Cauchy problem on the Vlasov–Poisson–Boltzmann system in the torus domain. The Boltzmann collision kernel is assumed to be angular non-cutoff with $0 \leq \gamma \lt 1$ and $1/2 \leq s \lt 1$, where $\gamma, s$ are two parameters describing the kinetic and angular singularities, respectively. We obtain the global-in-time unique mild solutions, and prove that the solutions converge to the global Maxwellian with the large-time decay rate of $\mathcal{O}(e^{-\lambda t})$ in the $L^1_k L^2_v$-norm for some $\lambda \gt 0$. Furthermore, we justify the property of propagation of regularity of solutions in the spatial variable.
非截止弗拉索夫-泊松-波尔兹曼系统的全局温和解
本文关注的是环域中 Vlasov-Poisson-Boltzmann 系统的考奇问题。假定玻尔兹曼碰撞内核是角非截断的,有$0 \leq \gamma \lt 1$和$1/2 \leq s \lt 1$,其中$\gamma, s$分别是描述动力学和角奇异性的两个参数。我们得到了全局时间内唯一的温和解,并证明这些解收敛于全局麦克斯韦值,对于某些 $\lambda \gt 0$,大时间衰减率为 $\mathcal{O}(e^{-\lambda t})$。此外,我们还证明了空间变量解的正则性传播特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信