Structure-aware decoupled imputation network for multivariate time series

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nourhan Ahmed, Lars Schmidt-Thieme
{"title":"Structure-aware decoupled imputation network for multivariate time series","authors":"Nourhan Ahmed, Lars Schmidt-Thieme","doi":"10.1007/s10618-023-00987-9","DOIUrl":null,"url":null,"abstract":"<p>Handling incomplete multivariate time series is an important and fundamental concern for a variety of domains. Existing time-series imputation approaches rely on basic assumptions regarding relationship information between sensors, posing significant challenges since inter-sensor interactions in the real world are often complex and unknown beforehand. Specifically, there is a lack of in-depth investigation into (1) the coexistence of relationships between sensors and (2) the incorporation of reciprocal impact between sensor properties and inter-sensor relationships for the time-series imputation problem. To fill this gap, we present the Structure-aware Decoupled imputation network (SaD), which is designed to model sensor characteristics and relationships between sensors in distinct latent spaces. Our approach is equipped with a two-step knowledge integration scheme that incorporates the influence between the sensor attribute information as well as sensor relationship information. The experimental results indicate that when compared to state-of-the-art models for time-series imputation tasks, our proposed method can reduce error by around 15%.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"107 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-023-00987-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Handling incomplete multivariate time series is an important and fundamental concern for a variety of domains. Existing time-series imputation approaches rely on basic assumptions regarding relationship information between sensors, posing significant challenges since inter-sensor interactions in the real world are often complex and unknown beforehand. Specifically, there is a lack of in-depth investigation into (1) the coexistence of relationships between sensors and (2) the incorporation of reciprocal impact between sensor properties and inter-sensor relationships for the time-series imputation problem. To fill this gap, we present the Structure-aware Decoupled imputation network (SaD), which is designed to model sensor characteristics and relationships between sensors in distinct latent spaces. Our approach is equipped with a two-step knowledge integration scheme that incorporates the influence between the sensor attribute information as well as sensor relationship information. The experimental results indicate that when compared to state-of-the-art models for time-series imputation tasks, our proposed method can reduce error by around 15%.

Abstract Image

多变量时间序列的结构感知解耦归因网络
处理不完整的多变量时间序列是各种领域的重要基本问题。现有的时间序列估算方法依赖于有关传感器之间关系信息的基本假设,这带来了巨大的挑战,因为现实世界中传感器之间的交互通常是复杂的,而且事先是未知的。具体来说,目前缺乏对以下方面的深入研究:(1) 传感器之间关系的共存性;(2) 在时间序列估算问题中纳入传感器属性和传感器间关系之间的相互影响。为了填补这一空白,我们提出了结构感知解耦合估算网络(SaD),其目的是在不同的潜在空间中对传感器特性和传感器之间的关系进行建模。我们的方法配备了两步知识整合方案,将传感器属性信息和传感器关系信息之间的影响纳入其中。实验结果表明,与用于时间序列估算任务的最先进模型相比,我们提出的方法可将误差减少约 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信