A Novel In silico Filtration Method for Discovery of Encrypted Antimicrobial Peptides

IF 2.4 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Farnoosh Barneh, Ahmad Nazarian, Rezvan Mousavi-nadushan, Kamran Pooshang Bagheri
{"title":"A Novel In silico Filtration Method for Discovery of Encrypted Antimicrobial Peptides","authors":"Farnoosh Barneh, Ahmad Nazarian, Rezvan Mousavi-nadushan, Kamran Pooshang Bagheri","doi":"10.2174/0115748936274103231114105340","DOIUrl":null,"url":null,"abstract":"Background:: Antibacterial resistance has been one of the most important causes of death in the last few decades, necessitating the need to discover new antibiotics. Antimicrobial peptides (AMPs) are among the best candidates due to their broad-spectrum and potent activity against bacteria and low probability of developing resistance against them. Objective:: In this study, we proposed a novel filtration method using knowledge-based approaches to discover encrypted AMPs within a protein sequence Methods:: The encrypted AMPs were selected from a protein sequence, in this case, lactoferrin, based on hydrophobicity, cationicity, alpha-helix structure, helical wheel projection, and binding affinities to gram-negative and positive bacterial membranes. Results:: Six out of 20 potential encrypted AMPs were ultimately selected for further assays. Molecular docking of the selected AMPs with outer and inner membranes of gram-negative bacteria and also gram-positive bacterial membranes showed reasonable binding affinity ranging from ‘-6.7 to -7.5’ and ‘- 4.5 to -5.7’ and ‘-4.6 to -5.7’ kcal/mol, respectively. No toxicity was shown in the candidate AMPs. Conclusion:: According to in silico results, our method succeeded to discover six new encrypted AMPs from human lactoferrin, designated as lactoferrin-derived peptides (LDPs). Further in silico and experimental assays should also be performed to prove the efficiency of our knowledge-based filtration method.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936274103231114105340","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background:: Antibacterial resistance has been one of the most important causes of death in the last few decades, necessitating the need to discover new antibiotics. Antimicrobial peptides (AMPs) are among the best candidates due to their broad-spectrum and potent activity against bacteria and low probability of developing resistance against them. Objective:: In this study, we proposed a novel filtration method using knowledge-based approaches to discover encrypted AMPs within a protein sequence Methods:: The encrypted AMPs were selected from a protein sequence, in this case, lactoferrin, based on hydrophobicity, cationicity, alpha-helix structure, helical wheel projection, and binding affinities to gram-negative and positive bacterial membranes. Results:: Six out of 20 potential encrypted AMPs were ultimately selected for further assays. Molecular docking of the selected AMPs with outer and inner membranes of gram-negative bacteria and also gram-positive bacterial membranes showed reasonable binding affinity ranging from ‘-6.7 to -7.5’ and ‘- 4.5 to -5.7’ and ‘-4.6 to -5.7’ kcal/mol, respectively. No toxicity was shown in the candidate AMPs. Conclusion:: According to in silico results, our method succeeded to discover six new encrypted AMPs from human lactoferrin, designated as lactoferrin-derived peptides (LDPs). Further in silico and experimental assays should also be performed to prove the efficiency of our knowledge-based filtration method.
发现加密抗菌肽的新型硅学过滤方法
背景过去几十年来,抗菌药耐药性已成为导致死亡的最重要原因之一,因此有必要发现新的抗生素。抗菌肽(AMPs)具有广谱、强效的抗菌活性,而且产生抗药性的可能性较低,因此是最佳候选药物之一。研究目的在这项研究中,我们提出了一种新颖的过滤方法,利用基于知识的方法来发现蛋白质序列中的加密 AMPs 方法::根据疏水性、阳离子性、α-螺旋结构、螺旋轮投影以及与革兰氏阴性和阳性细菌膜的结合亲和力,从蛋白质序列(本例中为乳铁蛋白)中筛选出加密的 AMPs。研究结果最终从 20 个潜在的加密 AMP 中选出了 6 个进行进一步检测。所选 AMP 与革兰氏阴性细菌外膜和内膜以及革兰氏阳性细菌膜的分子对接显示出合理的结合亲和力,分别为"-6.7 至 -7.5"、"-4.5 至 -5.7 "和"-4.6 至 -5.7 "千卡/摩尔。候选 AMP 未显示出毒性。结论根据硅学结果,我们的方法成功地从人类乳铁蛋白中发现了六种新的加密 AMPs,并将其命名为乳铁蛋白衍生肽(LDPs)。为了证明我们基于知识的过滤方法的效率,还需要进行进一步的硅学和实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信