{"title":"Stochastic Bernoulli Equation on the Algebra of Generalized Functions","authors":"Hafedh Rguigui","doi":"10.1007/s11253-023-02258-8","DOIUrl":null,"url":null,"abstract":"<p>Based on the topological dual space <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span> of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span>. This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"82 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02258-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the topological dual space \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\) of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\). This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.