Approximations of Quasi-Equilibria and Nash Quasi-Equilibria in Terms of Variational Convergence

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huynh Thi Hong Diem, Phan Quoc Khanh
{"title":"Approximations of Quasi-Equilibria and Nash Quasi-Equilibria in Terms of Variational Convergence","authors":"Huynh Thi Hong Diem, Phan Quoc Khanh","doi":"10.1007/s11228-023-00704-0","DOIUrl":null,"url":null,"abstract":"<p>Various types of variational convergence of functions and bifunctions are applied to study global approximations of a quasi-equilibrium problem and a Nash quasi-game (generalized noncooperative game), two typical and important optimization models. We prove that when the data of approximating problems of a problem under consideration converge in the sense of suitable types of epi-, epi/hypo-, lop-convergence, or their weak variants, approximate solutions of the above approximating problems set converge to solutions of the original problem. Some results are new and others improve certain known ones since the applied types of variational convergence are weaker than the usually used classical types.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11228-023-00704-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Various types of variational convergence of functions and bifunctions are applied to study global approximations of a quasi-equilibrium problem and a Nash quasi-game (generalized noncooperative game), two typical and important optimization models. We prove that when the data of approximating problems of a problem under consideration converge in the sense of suitable types of epi-, epi/hypo-, lop-convergence, or their weak variants, approximate solutions of the above approximating problems set converge to solutions of the original problem. Some results are new and others improve certain known ones since the applied types of variational convergence are weaker than the usually used classical types.

从变分收敛看准均衡和纳什准均衡的近似值
在研究准均衡问题和纳什准博弈(广义非合作博弈)这两个典型而重要的优化模型的全局近似时,应用了函数和二次函数的各种类型的变分收敛。我们证明,当所考虑问题的近似问题数据在适当类型的表收敛、表/半表收敛、洛浦收敛或其弱变体的意义上收敛时,上述近似问题集的近似解就会收敛到原始问题的解。由于应用的变分收敛类型比通常使用的经典类型更弱,因此有些结果是新的,有些则是对某些已知结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信