Transmission probability of gas molecules through porous layers at Knudsen diffusion

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wolfgang Macher, Yuri Skorov, Günter Kargl, Sunny Laddha, Stephan Zivithal
{"title":"Transmission probability of gas molecules through porous layers at Knudsen diffusion","authors":"Wolfgang Macher, Yuri Skorov, Günter Kargl, Sunny Laddha, Stephan Zivithal","doi":"10.1007/s10665-023-10308-0","DOIUrl":null,"url":null,"abstract":"<p>Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets). In many applications the Knudsen regime is predominant, where the pore size is small compared to the mean free path between intermolecular collisions. In this context common parameters to describe the gas percolation through layers of porous media are the probability of gas molecule transmission and the Knudsen diffusion coefficient of the medium. We show how probabilistic considerations on layer partitions lead to the analytical description of the permeability of a porous medium to gas flow as a function of layer thickness. The derivations are made on the preconditions that the molecule reflection at pore surfaces is diffuse and that the pore structure is homogenous on a scale much larger than the pore size. By applying a bi-hemispherical Maxwell distribution, relations between the layer transmission probability, the half-transmission thickness, and the Knudsen diffusion coefficient are obtained. For packings of spheres, expressions of these parameters in terms of porosity and grain size are derived and compared with former standard models. A verification of the derived equations is given by means of numerical simulations, also providing evidence that our analytical model for sphere packing is more accurate than the former classical models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10308-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets). In many applications the Knudsen regime is predominant, where the pore size is small compared to the mean free path between intermolecular collisions. In this context common parameters to describe the gas percolation through layers of porous media are the probability of gas molecule transmission and the Knudsen diffusion coefficient of the medium. We show how probabilistic considerations on layer partitions lead to the analytical description of the permeability of a porous medium to gas flow as a function of layer thickness. The derivations are made on the preconditions that the molecule reflection at pore surfaces is diffuse and that the pore structure is homogenous on a scale much larger than the pore size. By applying a bi-hemispherical Maxwell distribution, relations between the layer transmission probability, the half-transmission thickness, and the Knudsen diffusion coefficient are obtained. For packings of spheres, expressions of these parameters in terms of porosity and grain size are derived and compared with former standard models. A verification of the derived equations is given by means of numerical simulations, also providing evidence that our analytical model for sphere packing is more accurate than the former classical models.

Abstract Image

气体分子在努森扩散条件下通过多孔层的传输概率
气体流经多孔材料层在技术应用、地质学、石油化学和空间科学(如燃料电池、催化、页岩气生产和彗星挥发气体)中发挥着至关重要的作用。在许多应用中,孔隙尺寸与分子间碰撞的平均自由路径相比较小,这在克努森体系中占主导地位。在这种情况下,描述气体在多孔介质层中渗透的常用参数是气体分子传输概率和介质的克努森扩散系数。我们展示了如何通过对层分区的概率考虑,分析描述多孔介质对气体流动的渗透性与层厚度的函数关系。推导的前提条件是孔隙表面的分子反射是扩散的,孔隙结构在比孔隙尺寸大得多的尺度上是均匀的。通过应用双半球麦克斯韦分布,得到了层透射概率、半透射厚度和努森扩散系数之间的关系。对于球形填料,推导出了这些参数在孔隙率和晶粒尺寸方面的表达式,并与以前的标准模型进行了比较。通过数值模拟对推导出的方程进行了验证,也证明了我们的球体堆积分析模型比以前的经典模型更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信