{"title":"CAT(0) spaces of higher rank II","authors":"Stephan Stadler","doi":"10.1007/s00222-023-01230-4","DOIUrl":null,"url":null,"abstract":"<p>This belongs to a series of papers motivated by Ballmann’s Higher Rank Rigidity Conjecture. We prove the following. Let <span>\\(X\\)</span> be a CAT(0) space with a geometric group action <span>\\(\\Gamma \\curvearrowright X\\)</span>. Suppose that every geodesic in <span>\\(X\\)</span> lies in an <span>\\(n\\)</span>-flat, <span>\\(n\\geq 2\\)</span>. If <span>\\(X\\)</span> contains a periodic <span>\\(n\\)</span>-flat which does not bound a flat <span>\\((n+1)\\)</span>-half-space, then <span>\\(X\\)</span> is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01230-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This belongs to a series of papers motivated by Ballmann’s Higher Rank Rigidity Conjecture. We prove the following. Let \(X\) be a CAT(0) space with a geometric group action \(\Gamma \curvearrowright X\). Suppose that every geodesic in \(X\) lies in an \(n\)-flat, \(n\geq 2\). If \(X\) contains a periodic \(n\)-flat which does not bound a flat \((n+1)\)-half-space, then \(X\) is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.