Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roberta Bianchini, Timothée Crin-Barat, Marius Paicu
{"title":"Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation","authors":"Roberta Bianchini,&nbsp;Timothée Crin-Barat,&nbsp;Marius Paicu","doi":"10.1007/s00205-023-01945-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in <span>\\(\\dot{H}^{1-\\tau }(\\mathbb {R}^2) \\cap \\dot{H}^s(\\mathbb {R}^2)\\)</span> with <span>\\(s &gt; 3\\)</span> and for any <span>\\(0&lt; \\tau &lt;1\\)</span>. Such a result improves upon the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to <span>\\(H^{20}(\\mathbb {R}^2)\\)</span>. More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in <span>\\(H^{1-\\tau }(\\mathbb {R}^2) \\cap \\dot{H}^s(\\mathbb {R}^2)\\)</span> with <span>\\(s &gt; 3\\)</span> and <span>\\(0&lt; \\tau &lt;1\\)</span>. Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity <span>\\(\\Vert u_2(t)\\Vert _{L^\\infty (\\mathbb {R}^2)}\\)</span> for initial data only in <span>\\(\\dot{H}^{1-\\tau }(\\mathbb {R}^2) \\cap \\dot{H}^s(\\mathbb {R}^2)\\)</span> with <span>\\(s &gt;3\\)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01945-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in \(\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s > 3\) and for any \(0< \tau <1\). Such a result improves upon the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to \(H^{20}(\mathbb {R}^2)\). More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in \(H^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s > 3\) and \(0< \tau <1\). Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity \(\Vert u_2(t)\Vert _{L^\infty (\mathbb {R}^2)}\) for initial data only in \(\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s >3\).

IPM 方程分层解的松弛逼近和渐近稳定性
我们证明了不可压缩多孔介质方程(IPM)的稳定分层解在初始扰动为(s > 3\) 和任意(0 < \tau <1\) 时的非线性渐近稳定性。这一结果改进了现有文献,在现有文献中,渐近稳定性是针对至少属于\(H^{20}(\mathbb {R}^2)\)的初始扰动证明的。更确切地说,本文的目的有三。首先,我们简化并改进了在\(H^{1-\tau }(\mathbb {R}^2)\cap\dot{H}^s(\mathbb {R}^2)\)中具有强阻尼涡度的Boussinesq方程的全局时间内好求解性证明,其中有\(s > 3\) 和\(0< \tau <1\)。接下来,我们证明了在合适的缩放条件下,带阻尼涡度的布森斯克系统对(IPM)的强收敛性。最后,副产品是(IPM)分层解的渐近稳定性。近似系统的对称性和通过各向异性 Littlewood-Paley 分解对方程各向异性的仔细研究,对获得均匀能量估计起着关键作用。最后新的关键点之一是垂直速度 \(\Vert u_2(t)\Vert _{L^\infty (\mathbb {R}^2)}\) 的可积分时间衰减,其初始数据仅在\(\dot{H}^{1-.\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s >;3\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信