Revisiting hemodynamics and blood oxygenation in a microfluidic microvasculature replica

IF 2.9 4区 医学 Q2 PERIPHERAL VASCULAR DISEASE
Rui Dong , Sijia Liu , Yuewu Li , Fan Gao , Keqiang Gao , Chunxiao Chen , Zhiyu Qian , Weitao Li , Yamin Yang
{"title":"Revisiting hemodynamics and blood oxygenation in a microfluidic microvasculature replica","authors":"Rui Dong ,&nbsp;Sijia Liu ,&nbsp;Yuewu Li ,&nbsp;Fan Gao ,&nbsp;Keqiang Gao ,&nbsp;Chunxiao Chen ,&nbsp;Zhiyu Qian ,&nbsp;Weitao Li ,&nbsp;Yamin Yang","doi":"10.1016/j.mvr.2023.104640","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The complexity of microvascular circulation has led to the development of advanced imaging techniques and </span>biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an </span><em>in vitro</em><span> model of microvasculature to replicate important geometric and functional features of </span><em>in vivo</em><span> perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O</span><sub>2</sub><span><span><span>) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic </span>blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal </span>optical imaging (ISOI) to visualize full-field blood flow distributions and blood O</span><sub>2</sub> profiles. By closely reproducing <em>in vivo</em><span> blood perfusion and oxygenation<span> conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O</span></span><sub>2</sub> transport parameters that are not directly measurable in traditional animal studies.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"152 ","pages":"Article 104640"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286223001668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of microvascular circulation has led to the development of advanced imaging techniques and biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an in vitro model of microvasculature to replicate important geometric and functional features of in vivo perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O2) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal optical imaging (ISOI) to visualize full-field blood flow distributions and blood O2 profiles. By closely reproducing in vivo blood perfusion and oxygenation conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O2 transport parameters that are not directly measurable in traditional animal studies.

Abstract Image

重新审视微流控微血管复制品中的血液动力学和血液含氧量
微血管循环的复杂性促使人们开发先进的成像技术和生物仿真模型。本研究开发了一种基于微流体的多元微装置,作为微血管的体外模型,以复制小鼠体内灌注的重要几何和功能特征。该微流体装置由一个用于血液灌注的微通道组成,反映了小鼠体内自然的分层分支血管结构。此外,该装置还包含一个稳定的氧气(O2)梯度,通过聚二甲基硅氧烷(PDMS)层扩散,实现动态血液供氧。组装好的多层微型装置配有双模式成像系统,该系统结合了激光斑点对比成像(LSCI)和本征信号光学成像(ISOI),可观察到全场血流分布和血液中氧气的分布情况。通过密切再现体内血液灌注和氧合条件,该微血管模型与数值模拟结果相结合,可提供与生理相关的血液动力学和关键氧气传输参数的定量信息,而这些参数在传统的动物实验中是无法直接测量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microvascular research
Microvascular research 医学-外周血管病
CiteScore
6.00
自引率
3.20%
发文量
158
审稿时长
43 days
期刊介绍: Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured. Research Areas include: • Angiogenesis • Biochemistry • Bioengineering • Biomathematics • Biophysics • Cancer • Circulatory homeostasis • Comparative physiology • Drug delivery • Neuropharmacology • Microvascular pathology • Rheology • Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信