N. E. Veremei, M. L. Toropova, Yu. A. Dovgaluk, A. M. Abshaev, Zh. M. Gekkieva, Yu. P. Mikhailovskii, A. A. Sin’kevich
{"title":"Influence of Glaciogenic Seeding on Electrical State and Lightning Activity of a Convective Cloud","authors":"N. E. Veremei, M. L. Toropova, Yu. A. Dovgaluk, A. M. Abshaev, Zh. M. Gekkieva, Yu. P. Mikhailovskii, A. A. Sin’kevich","doi":"10.3103/s1068373923080071","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Based on the synthesis of the radar and LS8000 lightning detection network data, as well as the cloud resolving modeling, the effect of glaciogenic seeding on the electrical activity of a hail-hazardous cloud, which developed in the North Caucasus on May 14, 2012 was investigated. It has been proved that the introduction of a reagent leads to an increase in the frequency of intracloud discharges and in the total current of negative cloud-to-ground discharges. An increase in the peak current of the cloud-to-ground discharges of both polarities occurs in 10–15 minutes after the seeding termination. Seeding significantly increases the frequency of lightning discharges both in a cloud and a subcloud layer. As a result of seeding, the charge structure of a cloud turns out to be inverted: there is not a positive but a negative charge in its upper part.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923080071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the synthesis of the radar and LS8000 lightning detection network data, as well as the cloud resolving modeling, the effect of glaciogenic seeding on the electrical activity of a hail-hazardous cloud, which developed in the North Caucasus on May 14, 2012 was investigated. It has been proved that the introduction of a reagent leads to an increase in the frequency of intracloud discharges and in the total current of negative cloud-to-ground discharges. An increase in the peak current of the cloud-to-ground discharges of both polarities occurs in 10–15 minutes after the seeding termination. Seeding significantly increases the frequency of lightning discharges both in a cloud and a subcloud layer. As a result of seeding, the charge structure of a cloud turns out to be inverted: there is not a positive but a negative charge in its upper part.
期刊介绍:
Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.