Model averaged tail area confidence intervals in nested linear regression models

Pub Date : 2023-12-07 DOI:10.1111/anzs.12402
Paul Kabaila, Ayesha Perera
{"title":"Model averaged tail area confidence intervals in nested linear regression models","authors":"Paul Kabaila, Ayesha Perera","doi":"10.1111/anzs.12402","DOIUrl":null,"url":null,"abstract":"The performance, in terms of coverage and expected length, of the model averaged tail area (MATA) confidence interval, proposed by Turek &amp; Fletcher (2012, <i>Computational Statistics &amp; Data Analysis</i>, 56, 2809–2815), depends greatly on the data-based model weights used in its construction. We generalise the computationally convenient exact formulae due to Kabaila, Welsh &amp; Abeysekera (2016, <i>Scandinavian Journal of Statistics</i>, 43, 35–48) for the coverage and expected length of this confidence interval for two nested linear regression models to the case of two or more nested linear regression models. This permits the numerical assessment of the performance, in terms of coverage probability and scaled expected length, of the MATA confidence interval for any given data-based model weights in the context of three or more nested linear regression models. We illustrate this numerical assessment of performance of the MATA confidence interval, for model weights based on any given Generalised Information Criterion, in the context of three nested linear regression models using the real life ‘Cholesterol’ data. This provides a very informative further exploration of the influence of these model weights on the performance of this confidence interval.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/anzs.12402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance, in terms of coverage and expected length, of the model averaged tail area (MATA) confidence interval, proposed by Turek & Fletcher (2012, Computational Statistics & Data Analysis, 56, 2809–2815), depends greatly on the data-based model weights used in its construction. We generalise the computationally convenient exact formulae due to Kabaila, Welsh & Abeysekera (2016, Scandinavian Journal of Statistics, 43, 35–48) for the coverage and expected length of this confidence interval for two nested linear regression models to the case of two or more nested linear regression models. This permits the numerical assessment of the performance, in terms of coverage probability and scaled expected length, of the MATA confidence interval for any given data-based model weights in the context of three or more nested linear regression models. We illustrate this numerical assessment of performance of the MATA confidence interval, for model weights based on any given Generalised Information Criterion, in the context of three nested linear regression models using the real life ‘Cholesterol’ data. This provides a very informative further exploration of the influence of these model weights on the performance of this confidence interval.
分享
查看原文
嵌套线性回归模型中的模型平均尾区置信区间
Turek & Fletcher(2012,Computational Statistics & Data Analysis,56,2809-2815)提出的模型平均尾区(MATA)置信区间在覆盖率和预期长度方面的性能,在很大程度上取决于其构建过程中使用的基于数据的模型权重。我们将 Kabaila、Welshamp &; Abeysekera(2016,《斯堪的纳维亚统计杂志》,43,35-48)提出的计算方便的精确公式,用于两个嵌套线性回归模型的覆盖范围和该置信区间的预期长度,推广到两个或更多嵌套线性回归模型的情况。这样,在三个或更多嵌套线性回归模型的情况下,对于任何给定的基于数据的模型权重,MATA 置信区间在覆盖概率和按比例预期长度方面的性能都可以进行数值评估。我们利用现实生活中的 "胆固醇 "数据,在三个嵌套线性回归模型的背景下,针对基于任何给定广义信息准则的模型权重,对 MATA 置信区间的性能进行了数值评估。这为进一步探索这些模型权重对置信区间性能的影响提供了非常丰富的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信