Higher-order soliton solutions for the Sasa–Satsuma equation revisited via $$\bar{\partial }$$ method

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
YongHui Kuang, Bolin Mao, Xin Wang
{"title":"Higher-order soliton solutions for the Sasa–Satsuma equation revisited via $$\\bar{\\partial }$$ method","authors":"YongHui Kuang, Bolin Mao, Xin Wang","doi":"10.1007/s44198-023-00160-2","DOIUrl":null,"url":null,"abstract":"<p>In optics, the Sasa–Satsuma equation can be used to model ultrashort optical pulses. In this paper higher-order soliton solutions for the Sasa–Satsuma equation with zero boundary condition at infinity are analyzed by <span>\\(\\bar{\\partial }\\)</span> method. The explicit determinant form of a soliton solution which corresponds to a single <span>\\(p_{l}\\)</span>-th order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-023-00160-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In optics, the Sasa–Satsuma equation can be used to model ultrashort optical pulses. In this paper higher-order soliton solutions for the Sasa–Satsuma equation with zero boundary condition at infinity are analyzed by \(\bar{\partial }\) method. The explicit determinant form of a soliton solution which corresponds to a single \(p_{l}\)-th order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.

Abstract Image

通过$\bar{\partial }$$方法重访萨萨-萨摩方程的高阶孤子解
在光学领域,Sasa-Satsuma 方程可以用来模拟超短光脉冲。本文用 \(\bar{\partial }\) 方法分析了在无穷远处具有零边界条件的 Sasa-Satsuma 方程的高阶孤子解。给出了一个孤子解的显式行列式,它对应于一个 \(p_{l}\)-th 阶极点。此外,还考虑了与一个简单极点和另一个双极点相关的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信