{"title":"Higher-order soliton solutions for the Sasa–Satsuma equation revisited via $$\\bar{\\partial }$$ method","authors":"YongHui Kuang, Bolin Mao, Xin Wang","doi":"10.1007/s44198-023-00160-2","DOIUrl":null,"url":null,"abstract":"<p>In optics, the Sasa–Satsuma equation can be used to model ultrashort optical pulses. In this paper higher-order soliton solutions for the Sasa–Satsuma equation with zero boundary condition at infinity are analyzed by <span>\\(\\bar{\\partial }\\)</span> method. The explicit determinant form of a soliton solution which corresponds to a single <span>\\(p_{l}\\)</span>-th order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-023-00160-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In optics, the Sasa–Satsuma equation can be used to model ultrashort optical pulses. In this paper higher-order soliton solutions for the Sasa–Satsuma equation with zero boundary condition at infinity are analyzed by \(\bar{\partial }\) method. The explicit determinant form of a soliton solution which corresponds to a single \(p_{l}\)-th order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics