Variational Autoencoder for Channel Estimation: Real-World Measurement Insights

Michael Baur, Benedikt Böck, Nurettin Turan, Wolfgang Utschick
{"title":"Variational Autoencoder for Channel Estimation: Real-World Measurement Insights","authors":"Michael Baur, Benedikt Böck, Nurettin Turan, Wolfgang Utschick","doi":"arxiv-2312.03450","DOIUrl":null,"url":null,"abstract":"This work utilizes a variational autoencoder for channel estimation and\nevaluates it on real-world measurements. The estimator is trained solely on\nnoisy channel observations and parameterizes an approximation to the mean\nsquared error-optimal estimator by learning observation-dependent conditional\nfirst and second moments. The proposed estimator significantly outperforms\nrelated state-of-the-art estimators on real-world measurements. We investigate\nthe effect of pre-training with synthetic data and find that the proposed\nestimator exhibits comparable results to the related estimators if trained on\nsynthetic data and evaluated on the measurement data. Furthermore, pre-training\non synthetic data also helps to reduce the required measurement training\ndataset size.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.
用于信道估计的变异自动编码器:真实世界的测量启示
这项工作利用变异自动编码器进行信道估计,并在实际测量中对其进行评估。该估计器完全根据噪声信道观测数据进行训练,并通过学习与观测相关的条件第一矩和第二矩,对均方误差最优估计器的近似值进行参数化。在实际测量中,所提出的估计器明显优于相关的最先进估计器。我们研究了使用合成数据进行预训练的效果,发现如果在合成数据上进行训练并在测量数据上进行评估,所提出的估计器与相关估计器的结果相当。此外,在合成数据上进行预训练还有助于减少所需的测量训练数据集大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信