V. D. Makarenko, S. S. Pobeda, Yu. V. Makarenko, S. Yu. Maksymov, V. I. Gots, S. M. Tkachenko, O. V. Vladymyrov, O. M. Horlach, I. V. Zadorozhnykova
{"title":"Elastoplastic Fracture Mechanics Approach to the Crack Growth Rate Computation of Modified Pipe Steels","authors":"V. D. Makarenko, S. S. Pobeda, Yu. V. Makarenko, S. Yu. Maksymov, V. I. Gots, S. M. Tkachenko, O. V. Vladymyrov, O. M. Horlach, I. V. Zadorozhnykova","doi":"10.1007/s11223-023-00584-7","DOIUrl":null,"url":null,"abstract":"<p>A mechanophysical model for crack growth kinetics computation on stress corrosion fracture of modified 06G2BA and 08KhMCHA pipe steels is adequately expressed through the plane stress-strain state <i>dα</i>/<i>dt</i> and <i>dJ</i>/<i>dt</i> ratios that are dependent on the strain crack tip rate. The crack growth accelerated by an aggressive environment occurs under static and cyclic loading due to transient dissolution and repassivation processes at the crack tip. Such accelerations are divided into three categories, determined by the strain rate: mechanical cracking (fatigue crack and stationary plastic crack), corrosion-accelerated mechanical cracking (corrosion fatigue and corrosion-accelerated plastic crack), and sulfide stress corrosion fracture. Metallographic studies revealed the change in the crack nucleation and propagation mechanisms, from transcrystalline to intercrystalline, related to the viscoplastic and brittle structure of steel specimens cyclically loaded and simultaneously affected by a corrosive environment.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-023-00584-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
A mechanophysical model for crack growth kinetics computation on stress corrosion fracture of modified 06G2BA and 08KhMCHA pipe steels is adequately expressed through the plane stress-strain state dα/dt and dJ/dt ratios that are dependent on the strain crack tip rate. The crack growth accelerated by an aggressive environment occurs under static and cyclic loading due to transient dissolution and repassivation processes at the crack tip. Such accelerations are divided into three categories, determined by the strain rate: mechanical cracking (fatigue crack and stationary plastic crack), corrosion-accelerated mechanical cracking (corrosion fatigue and corrosion-accelerated plastic crack), and sulfide stress corrosion fracture. Metallographic studies revealed the change in the crack nucleation and propagation mechanisms, from transcrystalline to intercrystalline, related to the viscoplastic and brittle structure of steel specimens cyclically loaded and simultaneously affected by a corrosive environment.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.