A Convolutional Neural Network based system for classifying malignant and benign skin lesions using mobile-device images

Rim Mhedbi, Peter Credico, Hannah O. Chan, Rakesh Joshi, Joshua N. Wong, Colin Hong
{"title":"A Convolutional Neural Network based system for classifying malignant and benign skin lesions using mobile-device images","authors":"Rim Mhedbi, Peter Credico, Hannah O. Chan, Rakesh Joshi, Joshua N. Wong, Colin Hong","doi":"10.1101/2023.12.06.23299413","DOIUrl":null,"url":null,"abstract":"The escalating incidence of skin lesions, coupled with a scarcity of dermatologists and the intricate nature of diagnostic procedures, has resulted in prolonged waiting periods. Consequently, morbidity and mortality rates stemming from untreated cancerous skin lesions have witnessed and upward trend. To address this issue, we propose a skin lesion classification model that leverages EfficientNet B7 Convolutional Neural Network(CNN) architecture, enabling early screening of skin lesions based on camera images. The model is trained on a diverse dataset encompassing eight distinct skin lesion classes: Basal Cell Carcinoma(BCC), Squamous Cell Carcinoma(SCC), Melanoma(MEL), Dysplastic Nevus(DN), Benign Keratosis-Like lesions(BKL), Melanocytic Nevi(NV), and an 'Other' class. Through Multiple iterations of data preprocessing, as well as comprehensive error analysis, the model achieves a remarkable accuracy rate of 87%","PeriodicalId":501385,"journal":{"name":"medRxiv - Dermatology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.06.23299413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating incidence of skin lesions, coupled with a scarcity of dermatologists and the intricate nature of diagnostic procedures, has resulted in prolonged waiting periods. Consequently, morbidity and mortality rates stemming from untreated cancerous skin lesions have witnessed and upward trend. To address this issue, we propose a skin lesion classification model that leverages EfficientNet B7 Convolutional Neural Network(CNN) architecture, enabling early screening of skin lesions based on camera images. The model is trained on a diverse dataset encompassing eight distinct skin lesion classes: Basal Cell Carcinoma(BCC), Squamous Cell Carcinoma(SCC), Melanoma(MEL), Dysplastic Nevus(DN), Benign Keratosis-Like lesions(BKL), Melanocytic Nevi(NV), and an 'Other' class. Through Multiple iterations of data preprocessing, as well as comprehensive error analysis, the model achieves a remarkable accuracy rate of 87%
基于卷积神经网络的系统,利用移动设备图像对恶性和良性皮肤病变进行分类
皮肤病变的发病率不断上升,加上皮肤科医生稀缺和诊断程序复杂,导致等待时间延长。因此,未经治疗的癌症皮肤病变导致的发病率和死亡率呈上升趋势。为解决这一问题,我们提出了一种皮肤病变分类模型,该模型利用了 EfficientNet B7 卷积神经网络(CNN)架构,能够基于摄像头图像对皮肤病变进行早期筛查。该模型在一个包含八种不同皮肤病变类别的多样化数据集上进行了训练:基底细胞癌(BCC)、鳞状细胞癌(SCC)、黑色素瘤(MEL)、增生异常痣(DN)、良性角化病样病变(BKL)、黑色素细胞痣(NV)和 "其他 "类。通过多次迭代的数据预处理和全面的误差分析,该模型的准确率达到了 87% 的显著水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信