A degenerate Kirchhoff-type problem involving variable $$s(\cdot )$$ -order fractional $$p(\cdot )$$ -Laplacian with weights

IF 0.6 3区 数学 Q3 MATHEMATICS
Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki
{"title":"A degenerate Kirchhoff-type problem involving variable $$s(\\cdot )$$ -order fractional $$p(\\cdot )$$ -Laplacian with weights","authors":"Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki","doi":"10.1007/s10998-023-00562-1","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a class of nonlocal variable <i>s</i>(.)-order fractional <i>p</i>(.)-Kirchhoff type equations: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} {\\mathcal {K}}\\left( \\int _{{\\mathbb {R}}^{2N}}\\frac{1}{p(x,y)}\\frac{|\\varphi (x)-\\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \\,dx\\,dy\\right) (-\\Delta )^{s(\\cdot )}_{p(\\cdot )}\\varphi (x) =f(x,\\varphi ) \\quad \\text{ in } \\Omega , \\\\ \\varphi =0 \\quad \\text{ on } {\\mathbb {R}}^N\\backslash \\Omega . \\end{array} \\right. \\end{aligned}$$</span><p>Under some suitable conditions on the functions <span>\\(p,s, {\\mathcal {K}}\\)</span> and <i>f</i>, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the <span>\\(p(\\cdot )\\)</span> fractional setting.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"17 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00562-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a class of nonlocal variable s(.)-order fractional p(.)-Kirchhoff type equations:

$$\begin{aligned} \left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \,dx\,dy\right) (-\Delta )^{s(\cdot )}_{p(\cdot )}\varphi (x) =f(x,\varphi ) \quad \text{ in } \Omega , \\ \varphi =0 \quad \text{ on } {\mathbb {R}}^N\backslash \Omega . \end{array} \right. \end{aligned}$$

Under some suitable conditions on the functions \(p,s, {\mathcal {K}}\) and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the \(p(\cdot )\) fractional setting.

涉及带权重的变量$$s(\cdot )$$ -阶分数$$p(\cdot )$$ -拉普拉奇的退化基尔霍夫型问题
本文讨论一类非局部变量 s(.)-order 分数 p(.)-Kirchhoff 型方程: $$\begin{aligned}\left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}}\(-Delta)^{s(\cdot)}_{p(\cdot)}\varphi (x) =f(x,\varphi ) \quad \text{ in }*Omega , *varphi =0 *quad *text{ on }{mathbb {R}}^N\backslash \Omega .\end{array}\(right.\end{aligned}$$在函数 \(p,s, {\mathcal {K}}\) 和 f 的一些合适条件下,我们得到了上述问题的非微观解的存在性和多重性。我们的结果涵盖了 \(p(\cdot )\) 分数设置中的退化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信