{"title":"funLOCI: A Local Clustering Algorithm for Functional Data","authors":"Jacopo Di Iorio, Simone Vantini","doi":"10.1007/s00357-023-09456-w","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, an increasing number of problems involve data with one infinite continuous dimension known as functional data. In this paper, we introduce the <i>funLOCI</i> algorithm, which enables the identification of functional local clusters or functional loci, i.e, subsets or groups of curves that exhibit similar behavior across the same continuous subset of the domain. The definition of functional local clusters incorporates ideas from multivariate and functional clustering and biclustering and is based on an additive model that takes into account the shape of the curves. <i>funLOCI</i> is a multi-step algorithm that relies on hierarchical clustering and a functional version of the mean squared residue score to identify and validate candidate loci. Subsequently, all the results are collected and ordered in a post-processing step. To evaluate our algorithm performance, we conduct extensive simulations and compare it with other recently proposed algorithms in the literature. Furthermore, we apply <i>funLOCI</i> to a real-data case regarding inner carotid arteries.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-023-09456-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, an increasing number of problems involve data with one infinite continuous dimension known as functional data. In this paper, we introduce the funLOCI algorithm, which enables the identification of functional local clusters or functional loci, i.e, subsets or groups of curves that exhibit similar behavior across the same continuous subset of the domain. The definition of functional local clusters incorporates ideas from multivariate and functional clustering and biclustering and is based on an additive model that takes into account the shape of the curves. funLOCI is a multi-step algorithm that relies on hierarchical clustering and a functional version of the mean squared residue score to identify and validate candidate loci. Subsequently, all the results are collected and ordered in a post-processing step. To evaluate our algorithm performance, we conduct extensive simulations and compare it with other recently proposed algorithms in the literature. Furthermore, we apply funLOCI to a real-data case regarding inner carotid arteries.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.