Robust parameter estimation of the log-logistic distribution based on density power divergence estimators

A. Felipe, M. Jaenada, P. Miranda, L. Pardo
{"title":"Robust parameter estimation of the log-logistic distribution based on density power divergence estimators","authors":"A. Felipe, M. Jaenada, P. Miranda, L. Pardo","doi":"arxiv-2312.02662","DOIUrl":null,"url":null,"abstract":"Robust inferential methods based on divergences measures have shown an\nappealing trade-off between efficiency and robustness in many different\nstatistical models. In this paper, minimum density power divergence estimators\n(MDPDEs) for the scale and shape parameters of the log-logistic distribution\nare considered. The log-logistic is a versatile distribution modeling lifetime\ndata which is commonly adopted in survival analysis and reliability engineering\nstudies when the hazard rate is initially increasing but then it decreases\nafter some point. Further, it is shown that the classical estimators based on\nmaximum likelihood (MLE) are included as a particular case of the MDPDE family.\nMoreover, the corresponding influence function of the MDPDE is obtained, and\nits boundlessness is proved, thus leading to robust estimators. A simulation\nstudy is carried out to illustrate the slight loss in efficiency of MDPDE with\nrespect to MLE and, at besides, the considerable gain in robustness.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.
基于密度幂发散估计器的对数对数分布稳健参数估计
在许多不同的统计模型中,基于发散度量的稳健推断方法在效率和稳健性之间做出了令人满意的权衡。本文考虑了对数对数分布的规模和形状参数的最小密度功率发散估计器(MDPDE)。对数-对数分布是对生命周期数据建模的一种通用分布,在生存分析和可靠性工程研究中,当危险率最初不断增加,但在某个点之后又不断减少时,通常会采用对数-对数分布。此外,还得到了 MDPDE 的相应影响函数,并证明了其无边界性,从而得到了稳健的估计值。通过模拟研究说明了 MDPDE 相对于 MLE 在效率上的轻微损失,以及在稳健性上的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信