Maximum likelihood thresholds of Gaussian graphical models and graphical lasso

Daniel Irving Bernstein, Hayden Outlaw
{"title":"Maximum likelihood thresholds of Gaussian graphical models and graphical lasso","authors":"Daniel Irving Bernstein, Hayden Outlaw","doi":"arxiv-2312.03145","DOIUrl":null,"url":null,"abstract":"Associated to each graph G is a Gaussian graphical model. Such models are\noften used in high-dimensional settings, i.e. where there are relatively few\ndata points compared to the number of variables. The maximum likelihood\nthreshold of a graph is the minimum number of data points required to fit the\ncorresponding graphical model using maximum likelihood estimation. Graphical\nlasso is a method for selecting and fitting a graphical model. In this project,\nwe ask: when graphical lasso is used to select and fit a graphical model on n\ndata points, how likely is it that n is greater than or equal to the maximum\nlikelihood threshold of the corresponding graph? Our results are a series of\ncomputational experiments.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Associated to each graph G is a Gaussian graphical model. Such models are often used in high-dimensional settings, i.e. where there are relatively few data points compared to the number of variables. The maximum likelihood threshold of a graph is the minimum number of data points required to fit the corresponding graphical model using maximum likelihood estimation. Graphical lasso is a method for selecting and fitting a graphical model. In this project, we ask: when graphical lasso is used to select and fit a graphical model on n data points, how likely is it that n is greater than or equal to the maximum likelihood threshold of the corresponding graph? Our results are a series of computational experiments.
高斯图形模型和图形套索的最大似然阈值
与每个图形 G 关联的是一个高斯图形模型。这种模型通常用于高维环境,即与变量数量相比数据点相对较少的情况。图形的最大似然阈值是使用最大似然估计拟合相应图形模型所需的最小数据点数。图形拟合是一种选择和拟合图形模型的方法。在这个项目中,我们要问:当使用图形套索在 nd 个数据点上选择和拟合图形模型时,n 大于或等于相应图形的最大似然阈值的可能性有多大?我们的结果是一系列计算实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信