Stability and guaranteed error control of approximations to the Monge–Ampère equation

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Dietmar Gallistl, Ngoc Tien Tran
{"title":"Stability and guaranteed error control of approximations to the Monge–Ampère equation","authors":"Dietmar Gallistl, Ngoc Tien Tran","doi":"10.1007/s00211-023-01385-5","DOIUrl":null,"url":null,"abstract":"<p>This paper analyzes a regularization scheme of the Monge–Ampère equation by uniformly elliptic Hamilton–Jacobi–Bellman equations. The main tools are stability estimates in the <span>\\(L^\\infty \\)</span> norm from the theory of viscosity solutions which are independent of the regularization parameter <span>\\(\\varepsilon \\)</span>. They allow for the uniform convergence of the solution <span>\\(u_\\varepsilon \\)</span> to the regularized problem towards the Alexandrov solution <i>u</i> to the Monge–Ampère equation for any nonnegative <span>\\(L^n\\)</span> right-hand side and continuous Dirichlet data. The main application are guaranteed a posteriori error bounds in the <span>\\(L^\\infty \\)</span> norm for continuously differentiable finite element approximations of <i>u</i> or <span>\\(u_\\varepsilon \\)</span>.\n</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"163 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01385-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes a regularization scheme of the Monge–Ampère equation by uniformly elliptic Hamilton–Jacobi–Bellman equations. The main tools are stability estimates in the \(L^\infty \) norm from the theory of viscosity solutions which are independent of the regularization parameter \(\varepsilon \). They allow for the uniform convergence of the solution \(u_\varepsilon \) to the regularized problem towards the Alexandrov solution u to the Monge–Ampère equation for any nonnegative \(L^n\) right-hand side and continuous Dirichlet data. The main application are guaranteed a posteriori error bounds in the \(L^\infty \) norm for continuously differentiable finite element approximations of u or \(u_\varepsilon \).

Abstract Image

蒙日-安培方程近似值的稳定性和保证误差控制
本文通过均匀椭圆哈密顿-雅可比-贝尔曼方程分析了蒙日-安培方程的正则化方案。主要工具是来自粘度解理论的 \(L^\infty \) norm 中的稳定性估计,它与正则化参数 \(\varepsilon \) 无关。它们允许正则化问题的解\(u_\varepsilon \)向任何非负\(L^n\)右边和连续狄利克特数据的蒙日-安培方程的亚历山德罗夫解u均匀收敛。主要应用是保证连续可微有限元近似 u 或 \(u_\varepsilon \)的 \(L^\infty \)规范的后验误差边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信