Cone Ranking for Multi-Criteria Decision Making

Andreas H Hamel, Daniel Kostner
{"title":"Cone Ranking for Multi-Criteria Decision Making","authors":"Andreas H Hamel, Daniel Kostner","doi":"arxiv-2312.03006","DOIUrl":null,"url":null,"abstract":"Recently introduced cone distribution functions from statistics are turned\ninto multi-criteria decision making (MCDM) tools. It is demonstrated that this\nprocedure can be considered as an upgrade of the weighted sum scalarization\ninsofar as it absorbs a whole collection of weighted sum scalarizations at once\ninstead of fixing a particular one in advance. Moreover, situations are\ncharacterized in which different types of rank reversal occur, and it is\nexplained why this might even be useful for analyzing the ranking procedure. A\nfew examples will be discussed and a potential application in machine learning\nis outlined.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"485 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently introduced cone distribution functions from statistics are turned into multi-criteria decision making (MCDM) tools. It is demonstrated that this procedure can be considered as an upgrade of the weighted sum scalarization insofar as it absorbs a whole collection of weighted sum scalarizations at once instead of fixing a particular one in advance. Moreover, situations are characterized in which different types of rank reversal occur, and it is explained why this might even be useful for analyzing the ranking procedure. A few examples will be discussed and a potential application in machine learning is outlined.
多标准决策的锥形排序
最近从统计学中引入的锥分布函数被转化为多标准决策(MCDM)工具。研究表明,这一过程可被视为加权和标量化的升级版,因为它一次性吸收了整个加权和标量化集合,而不是事先固定一个特定的标量化。此外,我们还描述了发生不同类型排序逆转的情况,并解释了为什么这对分析排序程序可能有用。我们还将讨论几个例子,并概述其在机器学习中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信