{"title":"5-Coloring reconfiguration of planar graphs with no short odd cycles","authors":"Daniel W. Cranston, Reem Mahmoud","doi":"10.1002/jgt.23064","DOIUrl":null,"url":null,"abstract":"<p>The coloring reconfiguration graph <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> has as its vertex set all the proper <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and two vertices in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> are adjacent if their corresponding <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-degenerate and <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge d+2$</annotation>\n </semantics></math>, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. Bousquet and Heinrich proved that if <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and bipartite, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math> for every planar graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with no 3-cycles and no 5-cycles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The coloring reconfiguration graph has as its vertex set all the proper -colorings of , and two vertices in are adjacent if their corresponding -colorings differ on a single vertex. Cereceda conjectured that if an -vertex graph is -degenerate and , then the diameter of is . Bousquet and Heinrich proved that if is planar and bipartite, then the diameter of is . (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of is for every planar graph with no 3-cycles and no 5-cycles.